-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy patheigenExample.cu
392 lines (313 loc) · 12.9 KB
/
eigenExample.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
////////////////////////////////////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (c) 2021, NVIDIA Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/////////////////////////////////////////////////////////////////////////////////
#include <matx.h>
// BUILD NOTES: TO build, include the path to the eigen in cmake with the variable eigen_DIR="Path/To/Eigen"
#ifdef USE_EIGEN
#include <Eigen/Dense>
#endif
#include <iostream>
int main([[maybe_unused]] int argc, [[maybe_unused]] char **argv)
{
MATX_ENTER_HANDLER();
int dimX = 3;
int dimY = 3;
matx::cudaExecutor exec{};
///////////////////////////////////////////////////////////////////////////////
////////////// Eigen Test Data Setup //////////////
///////////////////////////////////////////////////////////////////////////////
#ifdef USE_EIGEN
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> MatrixXdRowMajor; // define a custom type that is aligned to MatX row-Major.
Eigen::MatrixXd a(dimX, dimY);
MatrixXdRowMajor b(dimX, dimY);
Eigen::RowVectorXd rowVec(dimX);
Eigen::Matrix<std::complex<double>, 2, 2> complexMatrix;
Eigen::MatrixXf matrix10x10(10, 10);
#endif
///////////////////////////////////////////////////////////////////////////////
////////////// MatX Test Data Setup //////////////
///////////////////////////////////////////////////////////////////////////////
auto aTensor = matx::make_tensor<double>({dimX,dimY});
auto bTensor = matx::make_tensor<double>({dimX,dimY});
auto tensor1D = matx::make_tensor<double>({dimX});
auto complexTensor = matx::make_tensor<cuda::std::complex<double>>({2,2});
auto matTensor10x10 = matx::make_tensor<float>({10,10});
///////////////////////////////////////////////////////////////////////////////
////////////// Initialize Data //////////////
///////////////////////////////////////////////////////////////////////////////
#ifdef USE_EIGEN
std::cout <<"!!!!!!!!! Using Eigen in Test !!!!!!!!!" << std ::endl;
// Initialize with random values
a.setRandom();
b.setRandom();
matrix10x10.setRandom();
rowVec << 1, 2, 3;
complexMatrix(0, 0) = std::complex<double>(1.0, 2.0);
complexMatrix(0, 1) = std::complex<double>(2.0, 3.0);
complexMatrix(1, 0) = std::complex<double>(3.0, 4.0);
complexMatrix(1, 1) = std::complex<double>(4.0, 5.0);
#else
std::cout <<"!!!!!!!!! Eigen NOT USED in Test !!!!!!!!!" << std ::endl;
// provide data in tensors if eigen is not used
(aTensor = matx::random<double>({dimX, dimY}, matx::UNIFORM)).run(exec);
(bTensor = matx::random<double>({dimX, dimY}, matx::UNIFORM)).run(exec);
(complexTensor = matx::random<cuda::std::complex<double>>({2, 2}, matx::UNIFORM)).run(exec);
(matTensor10x10 = matx::random<double>({10, 10}, matx::UNIFORM)).run(exec);
#endif
///////////////////////////////////////////////////////////////////////////////
////////////// Copy Eigen inputs to MatX //////////////
///////////////////////////////////////////////////////////////////////////////
#ifdef USE_EIGEN
cudaMemcpy(aTensor.Data(), a.data(), sizeof(double) * dimX * dimY, cudaMemcpyHostToDevice);
cudaMemcpy(bTensor.Data(), b.data(), sizeof(double) * dimX * dimY, cudaMemcpyHostToDevice);
cudaMemcpy(complexTensor.Data(), complexMatrix.data(), sizeof(std::complex<double>)*2*2, cudaMemcpyHostToDevice);
cudaMemcpy(matTensor10x10.Data(), matrix10x10.data(), sizeof(float)*10*10, cudaMemcpyHostToDevice);
(aTensor = matx::transpose(aTensor)).run(exec);
// (bTensor = matx::transpose(bTensor)).run(exec); // do not need to transpose because b has the same layout
(complexTensor = matx::transpose(complexTensor)).run(exec);
(matTensor10x10 = matx::transpose(matTensor10x10)).run(exec);
#endif
tensor1D(0) = 1;
tensor1D(1) = 2;
tensor1D(2) = 3;
exec.sync();
// slower alternative of copying per-element
// for(int curX=0; curX<dimX; curX++)
// {
// for(int curY=0; curY<dimY; curY++)
// {
// aTensor(curX,curY) = a(curX,curY);
// bTensor(curX,curY) = b(curX,curY);
// }
// }
///////////////////////////////////////////////////////////////////////////////
////////////// Operation Examples //////////////
///////////////////////////////////////////////////////////////////////////////
//
// Data Mapping Example
//
#ifdef USE_EIGEN
std::cout << "=================== Data Map Example ===================" << std::endl;
double *raw_data;
// memory could be any type of allocation, but choosing to use managed memory so it's valid on the host and device (this does cost performance)
cudaMallocManaged((void**)&raw_data, dimX*dimY * sizeof(double));
for(int i=0; i < dimX * dimY; i++)
{
raw_data[i] = 0.1 + i * 0.1;
}
// map user memory into Eigen Matrix
Eigen::Map<MatrixXdRowMajor> mappedMatrix(raw_data, dimX, dimY);
std::cout << "Eigen Mapped Data :\n" << mappedMatrix << std::endl;
// map user memory into Eigen Matrix
auto mappedTensor = matx::make_tensor(raw_data, {dimX, dimY}, false); // create MatX tensor with non-owning user allocated memory
matx::print(mappedTensor);
// modify the data from each of the references
raw_data[4] = 117;
mappedMatrix(0,1) = 42;
mappedTensor(2,1) = 87;
// print modified data
std::cout << "Eigen Mapped Data After Modified :\n" << mappedMatrix << std::endl;
matx::print(mappedTensor);
#endif
//
// Basic Indexing
//
std::cout << "=================== Indexing ===================" << std::endl;
#ifdef USE_EIGEN
std::cout << "eigen a(1,2) = " << a(1,2) << std::endl;
#endif
std::cout << "MatX a(1,2) = " << aTensor(1,2) << std::endl;
//
// Add A and B
//
std::cout << "=================== Addition ===================" << std::endl;
#ifdef USE_EIGEN
Eigen::MatrixXd addResult = a + b;
std::cout << "A + B = \n" << addResult << std::endl;
#endif
auto addTensor = aTensor + bTensor;
matx::print(addTensor);
//
// Element-Wise Multiply A and B
//
std::cout << "=================== Element-Wise Multiply ===================" << std::endl;
#ifdef USE_EIGEN
Eigen::MatrixXd elementWise = a.cwiseProduct(b);
std::cout << "A .* B = \n" << elementWise << std::endl;
#endif
auto elementWiseTensor = aTensor*bTensor;
matx::print(elementWiseTensor);
//
// Divide A and B
//
std::cout << "=================== Element-Wise Division ===================" << std::endl;
#ifdef USE_EIGEN
Eigen::MatrixXd divResult = a.cwiseQuotient(b);
std::cout << "A / B = \n" << divResult << std::endl;
#endif
auto divResultTensor = aTensor / bTensor;
matx::print(divResultTensor);
//
// Slice (Continuous)
//
std::cout << "=================== Continuous Slice ===================" << std::endl;
#ifdef USE_EIGEN
Eigen::Matrix2d aSlice = a.block(0, 0, 2, 2);
std::cout << "A Sliced: \n" << aSlice << std::endl;
#endif
auto aSliceTensor = matx::slice<2>(aTensor,{0,0},{2,2});
matx::print(aSliceTensor);
//
// Slice (Strided)
//
std::cout << "=================== Strided Slice ===================" << std::endl;
#ifdef USE_EIGEN
std::cout << "Original matrix10x10:\n" << matrix10x10 << "\n\n";
// Define the starting point, number of elements to select, and strides for both rows and columns
// int startRow = 0, startCol = 0; // Starting index for rows and columns
// int rowStride = 3, colStride = 2; // Stride along rows and columns
// int numRows = 5; // Calculate the number of rows, considering every second element
// int numCols = 3; // Grab every third item until the 8th item (0, 3, 6)
// Create a Map with Stride to access the elements
Eigen::Map<Eigen::MatrixXf, 0, Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>>
strided(matrix10x10.data() + 0 * matrix10x10.outerStride() + 0,
5, 3,
Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>(3 * matrix10x10.outerStride(), 2));
// Print the strided matrix10x10
std::cout << "Strided matrix10x10:\n" << strided << "\n";
#endif
auto slicedMat = matx::slice(matTensor10x10, {0,0}, {matx::matxEnd,9}, {2,3});
matx::print(slicedMat);
//
// Clone
//
std::cout << "=================== Clone ===================" << std::endl;
#ifdef USE_EIGEN
// Use the replicate function to create a 5x5 matrix by replicating the 1x5 matrix
Eigen::MatrixXd mat = rowVec.replicate(3, 1);
std::cout << "1D Cloned to 2D \n" << mat << std::endl;
#endif
auto cloned3Tensor = matx::clone<2>(tensor1D, {3, matx::matxKeepDim});
matx::print(cloned3Tensor);
//
// Slice Row
//
std::cout << "=================== Slice Row ===================" << std::endl;
#ifdef USE_EIGEN
Eigen::RowVector3d row = a.row(1);
std::cout << "Sliced Row \n" << row << std::endl;
#endif
auto rowSlice = matx::slice<1>(aTensor, {1, 0}, {matx::matxDropDim, matx::matxEnd});
matx::print(rowSlice);
//
// Permute Rows
//
std::cout << "=================== Permute Rows ===================" << std::endl;
#ifdef USE_EIGEN
std::cout << "Original Matrix:\n" << a << std::endl;
// Define a permutation a
Eigen::PermutationMatrix<3> perm;
perm.indices() << 2, 1, 0; // This permutation swaps the first and third rows
// Apply the permutation to the rows
Eigen::Matrix3d permutedMatrix = perm * a;
std::cout << "Permuted Matrix (Rows):\n" << permutedMatrix << std::endl;
#endif
// Define a permutation a
auto permVec = matx::make_tensor<int>({dimX});
permVec(0) = 2;
permVec(1) = 1;
permVec(2) = 0;
// Apply the permutation to the rows
auto permTensor = matx::remap<0>(aTensor, permVec);
matx::print(permTensor);
//
// Permutation Dimensions
//
std::cout << "=================== Permute Dimension ===================" << std::endl;
// Unsupported by eigen
auto permA = permute(aTensor, {1,0});
matx::print(permA);
//
// Get Real Value
//
std::cout << "=================== Get Real Values ===================" << std::endl;
#ifdef USE_EIGEN
std::cout << "Original Complex Matrix:\n" << complexMatrix << std::endl;
// Extract and output the real part of the complex matrix
Eigen::Matrix<double, 2, 2> realMatrix = complexMatrix.real();
std::cout << "Real Part of Matrix:\n" << realMatrix << std::endl;
#endif
auto realTensor = matx::real(complexTensor);
matx::print(realTensor);
//
// Multiply A and B
//
std::cout << "=================== Matrix Multiply ===================" << std::endl;
#ifdef USE_EIGEN
Eigen::MatrixXd multResult = a * b;
std::cout << "A * B = \n" << multResult << std::endl;
#endif
auto multResultTensor=matmul(aTensor,bTensor);
matx::print(multResultTensor);
//
// inverse Matrix
//
std::cout << "=================== Invert Matrix ===================" << std::endl;
#ifdef USE_EIGEN
// Eigen::MatrixXd inverseMatrix = a.inverse(); // current bug where .run(exec) in inverse is ambiguous, so cannot be used with MatX
// std::cout << "Inverse of the Real Part:\n" << inverseMatrix << std::endl; // current bug where .run(exec) in inverse is ambiguous, so cannot be used with MatX
#endif
auto invTensor = matx::inv(aTensor);
matx::print(invTensor);
//
// 1D FFT
//
// Unsupported by eigen
//
// 1D IFFT
//
// Unsupported by eigen
//
// 2D FFT
//
// Unsupported by eigen
//
// 2D IFFT
//
// Unsupported by eigen
//
// Covariance
//
// Unsupported by eigen
MATX_CUDA_CHECK_LAST_ERROR();
MATX_EXIT_HANDLER();
return 0;
}