|
| 1 | +import os |
| 2 | + |
| 3 | +import hugectr |
| 4 | +import numpy as np |
| 5 | +import pandas as pd |
| 6 | +import pytest |
| 7 | + |
| 8 | +from merlin.io import Dataset |
| 9 | +from merlin.schema import Tags |
| 10 | +from merlin.transforms import Workflow |
| 11 | +from merlin.transforms.ops import AddTags, Categorify |
| 12 | + |
| 13 | + |
| 14 | +@pytest.fixture |
| 15 | +def hugectr_example_dataset(tmpdir): |
| 16 | + num_rows = 64 |
| 17 | + |
| 18 | + df = pd.DataFrame( |
| 19 | + { |
| 20 | + "a": np.arange(num_rows).astype(np.int64), |
| 21 | + "b": np.arange(num_rows).astype(np.int64), |
| 22 | + "c": np.arange(num_rows).astype(np.int64), |
| 23 | + "d": np.random.rand(num_rows).astype(np.float32), |
| 24 | + "label": np.array([0] * num_rows).astype(np.float32), |
| 25 | + }, |
| 26 | + ) |
| 27 | + categorical_columns = ["a", "b", "c"] |
| 28 | + dense_columns = ["d"] |
| 29 | + target_columns = ["label"] |
| 30 | + |
| 31 | + workflow = Workflow( |
| 32 | + (categorical_columns >> Categorify()) |
| 33 | + + (dense_columns >> AddTags(Tags.CONTINUOUS)) |
| 34 | + + (target_columns >> AddTags(Tags.TARGET)) |
| 35 | + ) |
| 36 | + |
| 37 | + dataset = workflow.fit_transform(Dataset(df)) |
| 38 | + |
| 39 | + return dataset |
| 40 | + |
| 41 | + |
| 42 | +@pytest.fixture |
| 43 | +def hugectr_example_model(hugectr_example_dataset, tmpdir): |
| 44 | + dataset = hugectr_example_dataset |
| 45 | + |
| 46 | + train_path = os.path.join(tmpdir, "hugectr_example_data/") |
| 47 | + os.mkdir(train_path) |
| 48 | + |
| 49 | + dataset.to_parquet( |
| 50 | + output_path=tmpdir, |
| 51 | + cats=dataset.schema.select_by_tag(Tags.CATEGORICAL).column_names, |
| 52 | + conts=dataset.schema.select_by_tag(Tags.CONTINUOUS).column_names, |
| 53 | + labels=dataset.schema.select_by_tag(Tags.TARGET).column_names, |
| 54 | + ) |
| 55 | + |
| 56 | + # slot_sizes = list of caridinalities per column |
| 57 | + slot_sizes = [ |
| 58 | + col.properties["embedding_sizes"]["cardinality"] |
| 59 | + for col in dataset.schema.select_by_tag(Tags.CATEGORICAL) |
| 60 | + ] |
| 61 | + |
| 62 | + # dense_dim = num of dense inputs |
| 63 | + dense_dim = len(dataset.schema.select_by_tag(Tags.CONTINUOUS)) |
| 64 | + |
| 65 | + solver = hugectr.CreateSolver( |
| 66 | + vvgpu=[[0]], |
| 67 | + batchsize=10, |
| 68 | + batchsize_eval=10, |
| 69 | + max_eval_batches=50, |
| 70 | + i64_input_key=True, |
| 71 | + use_mixed_precision=False, |
| 72 | + repeat_dataset=True, |
| 73 | + ) |
| 74 | + # https://github.com/NVIDIA-Merlin/HugeCTR/blob/9e648f879166fc93931c676a5594718f70178a92/docs/source/api/python_interface.md#datareaderparams |
| 75 | + reader = hugectr.DataReaderParams( |
| 76 | + data_reader_type=hugectr.DataReaderType_t.Parquet, |
| 77 | + source=[os.path.join(train_path, "_file_list.txt")], |
| 78 | + eval_source=os.path.join(train_path, "_file_list.txt"), |
| 79 | + check_type=hugectr.Check_t.Non, |
| 80 | + ) |
| 81 | + |
| 82 | + optimizer = hugectr.CreateOptimizer(optimizer_type=hugectr.Optimizer_t.Adam) |
| 83 | + model = hugectr.Model(solver, reader, optimizer) |
| 84 | + |
| 85 | + model.add( |
| 86 | + hugectr.Input( |
| 87 | + label_dim=1, |
| 88 | + label_name="label", |
| 89 | + dense_dim=dense_dim, |
| 90 | + dense_name="dense", |
| 91 | + data_reader_sparse_param_array=[ |
| 92 | + hugectr.DataReaderSparseParam("data1", len(slot_sizes) + 1, True, len(slot_sizes)) |
| 93 | + ], |
| 94 | + ) |
| 95 | + ) |
| 96 | + model.add( |
| 97 | + hugectr.SparseEmbedding( |
| 98 | + embedding_type=hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash, |
| 99 | + workspace_size_per_gpu_in_mb=107, |
| 100 | + embedding_vec_size=16, |
| 101 | + combiner="sum", |
| 102 | + sparse_embedding_name="sparse_embedding1", |
| 103 | + bottom_name="data1", |
| 104 | + slot_size_array=slot_sizes, |
| 105 | + optimizer=optimizer, |
| 106 | + ) |
| 107 | + ) |
| 108 | + model.add( |
| 109 | + hugectr.DenseLayer( |
| 110 | + layer_type=hugectr.Layer_t.InnerProduct, |
| 111 | + bottom_names=["dense"], |
| 112 | + top_names=["fc1"], |
| 113 | + num_output=512, |
| 114 | + ) |
| 115 | + ) |
| 116 | + model.add( |
| 117 | + hugectr.DenseLayer( |
| 118 | + layer_type=hugectr.Layer_t.Reshape, |
| 119 | + bottom_names=["sparse_embedding1"], |
| 120 | + top_names=["reshape1"], |
| 121 | + leading_dim=48, |
| 122 | + ) |
| 123 | + ) |
| 124 | + model.add( |
| 125 | + hugectr.DenseLayer( |
| 126 | + layer_type=hugectr.Layer_t.InnerProduct, |
| 127 | + bottom_names=["reshape1", "fc1"], |
| 128 | + top_names=["fc2"], |
| 129 | + num_output=1, |
| 130 | + ) |
| 131 | + ) |
| 132 | + model.add( |
| 133 | + hugectr.DenseLayer( |
| 134 | + layer_type=hugectr.Layer_t.BinaryCrossEntropyLoss, |
| 135 | + bottom_names=["fc2", "label"], |
| 136 | + top_names=["loss"], |
| 137 | + ) |
| 138 | + ) |
| 139 | + model.compile() |
| 140 | + model.summary() |
| 141 | + model.fit(max_iter=20, display=100, eval_interval=200, snapshot=10) |
| 142 | + |
| 143 | + return model |
0 commit comments