-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathmain.py
executable file
·148 lines (127 loc) · 4.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str)
parser.add_argument("--global_batch_size", type=int)
parser.add_argument("--amp", action="store_true", help="use auto mixed precision")
parser.add_argument("--xla", action="store_true", help="enable xla of tensorflow")
parser.add_argument(
"--eval_in_last", action="store_true", help="evaluate only after the last iteration"
)
parser.add_argument(
"--optimizer_name",
choices=["sgd", "adamax", "adagrad", "adadelta", "ftrl"],
default="sgd",
help="available name : sgd, adamax, adagrad, adadelta, ftrl",
)
parser.add_argument("--early_stop", type=int, default=-1)
parser.add_argument("--epochs", type=int, default=1)
parser.add_argument("--lr", type=float, default=24.0)
args = parser.parse_args()
args.lr_schedule_steps = [
int(2750 * 55296 / args.global_batch_size),
int(49315 * 55296 / args.global_batch_size),
int(27772 * 55296 / args.global_batch_size),
]
print("[Info] args:", args)
import os
if args.xla:
os.environ["TF_XLA_FLAGS"] = "--tf_xla_auto_jit=fusible"
import json
import time
start_time = time.time()
import sparse_operation_kit as sok
import horovod.tensorflow as hvd
import tensorflow as tf
import numpy as np
from dataset import BinaryDataset
from model import DLRM
from trainer import Trainer
def set_affinity(rank):
affinity_map = {
0: list(range(48, 64)) + list(range(176, 192)),
1: list(range(48, 64)) + list(range(176, 192)),
2: list(range(16, 32)) + list(range(144, 160)),
3: list(range(16, 32)) + list(range(144, 160)),
4: list(range(112, 128)) + list(range(240, 256)),
5: list(range(112, 128)) + list(range(240, 256)),
6: list(range(80, 96)) + list(range(208, 224)),
7: list(range(80, 96)) + list(range(208, 224)),
}
my_affinity = affinity_map[rank]
os.sched_setaffinity(0, my_affinity)
if __name__ == "__main__":
if args.amp:
print("[Info] use amp mode")
policy = tf.keras.mixed_precision.Policy("mixed_float16")
tf.keras.mixed_precision.set_global_policy(policy)
hvd.init()
sok.init()
gpus = tf.config.experimental.list_physical_devices("GPU")
rank = hvd.rank()
tf.config.experimental.set_memory_growth(gpus[rank % len(gpus)], True)
with open(os.path.join(args.data_dir, "train/metadata.json"), "r") as f:
metadata = json.load(f)
print(metadata)
model = DLRM(
metadata["vocab_sizes"],
num_dense_features=13,
num_sparse_features=26,
embedding_vec_size=128,
dcn_num_layers=3,
dcn_low_rank_dim=512,
bottom_stack_units=[512, 256, 128],
top_stack_units=[1024, 1024, 512, 256, 1],
num_gpus=hvd.size(),
)
print("[Info] Using dataset in %s" % args.data_dir)
dtype = {"int32": np.int32, "float32": np.float32}
dataset_dir = args.data_dir
dataset = BinaryDataset(
os.path.join(dataset_dir, "train/label.bin"),
os.path.join(dataset_dir, "train/dense.bin"),
os.path.join(dataset_dir, "train/category.bin"),
batch_size=args.global_batch_size // hvd.size(),
drop_last=True,
global_rank=hvd.rank(),
global_size=hvd.size(),
prefetch=20,
label_raw_type=dtype[metadata["label_raw_type"]],
dense_raw_type=dtype[metadata["dense_raw_type"]],
category_raw_type=dtype[metadata["category_raw_type"]],
hotness_per_table=metadata["hotness_per_table"],
log=metadata["dense_log"],
)
test_dataset = BinaryDataset(
os.path.join(dataset_dir, "test/label.bin"),
os.path.join(dataset_dir, "test/dense.bin"),
os.path.join(dataset_dir, "test/category.bin"),
batch_size=args.global_batch_size // hvd.size(),
drop_last=False,
global_rank=hvd.rank(),
global_size=hvd.size(),
prefetch=20,
label_raw_type=dtype[metadata["label_raw_type"]],
dense_raw_type=dtype[metadata["dense_raw_type"]],
category_raw_type=dtype[metadata["category_raw_type"]],
hotness_per_table=metadata["hotness_per_table"],
log=metadata["dense_log"],
)
trainer = Trainer(
model,
dataset,
test_dataset,
auc_thresholds=8000,
base_lr=args.lr,
warmup_steps=args.lr_schedule_steps[0],
decay_start_step=args.lr_schedule_steps[1],
decay_steps=args.lr_schedule_steps[2],
amp=args.amp,
opt_name=args.optimizer_name,
)
if args.eval_in_last:
trainer.train(
eval_interval=None, eval_in_last=True, early_stop=args.early_stop, epochs=args.epochs
)
else:
trainer.train(eval_in_last=False, early_stop=args.early_stop, epochs=args.epochs)
print("main time: %.2fs" % (time.time() - start_time))