forked from YuweiMao-NU/CP-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCp-ML-PowerLaw-func.py
180 lines (137 loc) · 5.66 KB
/
Cp-ML-PowerLaw-func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Crystal Plasticity Code.
import math,sys
from pylab import *
import matplotlib.pyplot as plt
from solver_init_CP import *
from solver_ML import *
import pickle
import numpy as np
import sklearn
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#++++++++++++++++ reading the base input file for init_ML_step ++++++++++++++++++++#
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
f = open('py_init.15','r')
a = [int(x) for x in f.readline().split()]
elements = []
nnode = a[0] ; nelem = a[1] ; tnode = a[2] ; nbc = a[3]
nconv = a[4]-1 ; n_slip = a[5]
for i in range(nelem):
elements.append([int(x)-1 for x in f.readline().split()])
coors = []
for i in range(tnode):
b = [float(x) for x in f.readline().split()]
b[0] = int(b[0])-1
coors.append(b)
bcs = []
for i in range(nbc):
bcs.append([int(x) for x in f.readline().split()])
props = [float(x) for x in f.readline().split()]
tstep = [float(x) for x in f.readline().split()]
tstep[0] = int(tstep[0])
init_ML_step = tstep[0]
props.append(tstep[1])
#----------------------------------------------
f1 = open('texture_init.15','r')
angle = []
for i in range(nelem):
angle.append([float(x) for x in f1.readline().split()])
#---------------- end of reading input file --------------------
ssy = open('SS.txt','w')
ssy.write("%f %f" % (0.0,0.0))
ssy.write('\n')
m_init_CP = Mesh_init(nnode,tnode,coors,nelem,elements)
ga = m_init_CP.solve_init_CP(nbc,bcs,angle,props,tstep,nconv,n_slip)
#--------------- volume stress-strain--------------
x = [] ; y = []
for istep in range(init_ML_step):
x.append(ga[0][istep][1])
y.append(ga[1][istep][1]/1.0e6)
ssy.write("%f %f" % (ga[0][istep][1],ga[1][istep][1]/1.0e6))
ssy.write('\n')
#ssy_base.close()
#--------------- end of volume stress-strain--------------
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#++++++++++++++ End of simulations for the base microstructure ++++++++++++++++++++#
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#### At this point the full history of Ft and Fp will be avialble
# Fp_list and F_list is a 3D list witt these diementions Fp_list[init_ML_step][element=1][ngauss=8]
gdisp = ga[2]
Fp_list = ga[4]
F_list = ga[5]
K_i = ga[6]
garray_list = ga[7]
Cauchy_i = ga[8]
Load_i = init_ML_step*tstep[1]*tstep[2]
#***********************************************************************************#
#***********************************************************************************#
#************ Reading the input file for the actual microstructure *****************#
#***********************************************************************************#
#***********************************************************************************#
f = open('py.15','r')
a = [int(x) for x in f.readline().split()]
elements = []
nnode = a[0] ; nelem = a[1] ; tnode = a[2] ; nbc = a[3]
nconv = a[4]-1 ; n_slip = a[5]
for i in range(nelem):
elements.append([int(x)-1 for x in f.readline().split()])
coors = []
for i in range(tnode):
b = [float(x) for x in f.readline().split()]
b[0] = int(b[0])-1
coors.append(b)
bcs = []
for i in range(nbc):
bcs.append([int(x) for x in f.readline().split()])
props = [float(x) for x in f.readline().split()]
tstep = [float(x) for x in f.readline().split()]
tstep[0] = int(tstep[0])
nstep = tstep[0]
props.append(tstep[1])
#----------------------------------------------
f1 = open('texture.15','r')
angle = []
for i in range(nelem):
angle.append([float(x) for x in f1.readline().split()])
#---------------- end of reading input file --------------------
#ssy = open('SS.txt','w')
# load ML model and parameters
input_size = 50
model = pickle.load(open('Ridge.model', 'rb'))
# print(garray_list)
Fp_list = np.array(Fp_list).reshape(init_ML_step, 8, 8, 3, 3)
F_list = np.array(F_list).reshape(init_ML_step, 8, 8, 3, 3)
# print(Fp_list[-3:, 0, 0, :, :].reshape(-1, 9))
# datapath = ''
# np.savetxt(datapath + 'F.npy', F_list.reshape(-1, 9))
# np.savetxt(datapath + 'Fp.npy', Fp_list.reshape(-1, 9))
# print(Fp_list.shape, F_list.shape)
Fp_list = Fp_list.tolist()
F_list = F_list.tolist()
m = Mesh(nnode,tnode,coors,nelem,elements)
ga = m.solve(input_size, model, nbc, bcs, angle, props, tstep, nconv,n_slip,init_ML_step,Fp_list,F_list,K_i,Load_i,garray_list,Cauchy_i,gdisp)
#--------------- volume stress-strain--------------
#x = [] ; y = []
#for istep in range(init_ML_step,nstep,1):
for istep in range(nstep-init_ML_step-1):
x.append(ga[0][istep+1][1])
y.append(ga[1][istep+1][1]/1.0e6)
ssy.write("%f %f" % (ga[0][istep+1][1],ga[1][istep+1][1]/1.0e6))
ssy.write('\n')
ssy.close()
#--------------- end of volumeC stress-strain--------------
# plot(x,y)
# ylabel('Stress(MPa)')
# xlabel('Strain')
#
# show()
# save the figure instead of showing it
# plt.savefig('stress_strain_plot.png') # save the plot to a file
#***********************************************************************************#
#***********************************************************************************#
#**************** End of simulations for the actual microstructure *****************#
#***********************************************************************************#
#***********************************************************************************#