|
27 | 27 | "metadata": {},
|
28 | 28 | "source": [
|
29 | 29 | "## dewtemp_trh\n",
|
30 |
| - "NCL's `dewtemp_trh` calculates the dew point temperature given temperature and relative humidity using the equations from John Dutton's _\"Ceaseless Wind\"_ (pg. 273-274){footcite}`dutton_1986` and returns a temperature in Kelvin\n", |
| 30 | + "NCL's `dewtemp_trh` calculates the dew point temperature given temperature and relative humidity using the equations from John Dutton's _\"Ceaseless Wind\"_ (pg. 273-274){footcite}`dutton_1986` and returns a temperature in Kelvin.\n", |
| 31 | + "\n", |
| 32 | + "Where, for the gas constant of water vapor ({math}`R_{v}`)of 461.5 {math}`\\frac{J}{K*kg}` ({math}`\\frac{461.5}{1000 * 4.186} \\frac{cal}{g*k}`), the empirical value of the latent heat (pg. 273, Problem 8.3.1) is:\n", |
| 33 | + "\n", |
| 34 | + "{math}`L_{lv} = 597.3 - 0.57(T - 273)`\n", |
| 35 | + "\n", |
| 36 | + "So, when {math}`h` is the relative humidity, the dew point temperature (pg. 273, Equation 6, solved for as {math}`T_D`) is:\n", |
| 37 | + "\n", |
| 38 | + "{math}`T_D = \\frac{T * L_{lv}}{L_{lv} - R_{v}Tlog(h)}`\n", |
31 | 39 | "\n",
|
32 | 40 | "<div class=\"admonition alert alert-info\">\n",
|
33 | 41 | " <p class=\"admonition-title\" style=\"font-weight:bold\">Important Note</p>\n",
|
|
78 | 86 | "source": [
|
79 | 87 | "## daylight_fao56\n",
|
80 | 88 | "\n",
|
81 |
| - "NCL's `daylight_fao56` calculates the maximum number of daylight hours as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 34)](https://www.fao.org/4/X0490E/x0490e07.htm#chapter%203%20%20%20meteorological%20data) {footcite}`allan_fao_1998`" |
| 89 | + "NCL's `daylight_fao56` calculates the maximum number of daylight hours as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 34)](https://www.fao.org/4/X0490E/x0490e07.htm#chapter%203%20%20%20meteorological%20data) {footcite}`allan_fao_1998`.\n", |
| 90 | + "\n", |
| 91 | + "Where the maximum number of daylight hours, {math}`N`, is:\n", |
| 92 | + "\n", |
| 93 | + "{math}`N = \\frac{24}{{\\pi}} {\\omega}_{s}`\n", |
| 94 | + "\n", |
| 95 | + "And {math}`{\\omega}_{s}` is the sunset hour angle in radians [(Chapter 3, Equation 25)](https://www.fao.org/4/X0490E/x0490e07.htm#chapter%203%20%20%20meteorological%20data) {footcite}`allan_fao_1998` which is calculated from the latitude of the observer on Earth ({math}`\\phi`) and the sun's declination ({math}`\\delta`):\n", |
| 96 | + "\n", |
| 97 | + "{math}`{\\omega}_{s} = arccos[-tan({\\phi})tan({\\delta})]`" |
82 | 98 | ]
|
83 | 99 | },
|
84 | 100 | {
|
|
125 | 141 | "source": [
|
126 | 142 | "## satvpr_temp_fao56\n",
|
127 | 143 | "\n",
|
128 |
| - "NCL's `satvpr_temp_fao56` calculates saturation vapor pressure using temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 11)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`" |
| 144 | + "NCL's `satvpr_temp_fao56` calculates saturation vapor pressure using temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 11)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`.\n", |
| 145 | + "\n", |
| 146 | + "Where the saturation vapor pressure, {math}`e^°` (kPa), at air temperature {math}`T` (°C) is calculated as:\n", |
| 147 | + "\n", |
| 148 | + "{math}`e^°(T) = 0.6108 {\\exp}[\\frac{17.27T}{T + 237.3}]`" |
129 | 149 | ]
|
130 | 150 | },
|
131 | 151 | {
|
|
169 | 189 | "source": [
|
170 | 190 | "## satvpr_tdew_fao56\n",
|
171 | 191 | "\n",
|
172 |
| - "NCL's `satvpr_tdew_fao56` calculates the actual saturation vapor pressure using dewpoint temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 14)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`" |
| 192 | + "NCL's `satvpr_tdew_fao56` calculates the actual saturation vapor pressure using dewpoint temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 14)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`.\n", |
| 193 | + "\n", |
| 194 | + "Where the actual vapor pressure, {math}`e_{a}` (kPa), is saturation vapor pressure at a specific dewpoint temperature, {math}`T_{dew}` (°C), which is calculated as:\n", |
| 195 | + "\n", |
| 196 | + "{math}`e_{a} = e^°(T_{dew}) = 0.6108 {\\exp}[\\frac{17.27 T_{dew}}{T_{dew} + 237.3}]`" |
173 | 197 | ]
|
174 | 198 | },
|
175 | 199 | {
|
|
206 | 230 | "source": [
|
207 | 231 | "## satvpr_slope_fao56\n",
|
208 | 232 | "\n",
|
209 |
| - "NCL's `satvpr_slope_fao56` calculates the slope of the saturation vapor pressure curve as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 13)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`" |
| 233 | + "NCL's `satvpr_slope_fao56` calculates the slope of the saturation vapor pressure curve as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 13)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`.\n", |
| 234 | + "\n", |
| 235 | + "Where the slope of saturation vapor pressure curve, {math}`{\\Delta}` (kPa), at air temperature {math}`T` (°C) is calculated as:\n", |
| 236 | + "\n", |
| 237 | + "{math}`{\\Delta} = \\frac{4098 (0.6108 {\\exp}[\\frac{17.27T}{T + 237.3}])}{(T + 237.3)^2}`" |
210 | 238 | ]
|
211 | 239 | },
|
212 | 240 | {
|
|
0 commit comments