Skip to content

Commit bcd330b

Browse files
authored
FAO Meteorology Equations (#168)
1 parent f43f902 commit bcd330b

File tree

1 file changed

+33
-5
lines changed

1 file changed

+33
-5
lines changed

ncl/ncl_entries/meteorology.ipynb

+33-5
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,15 @@
2727
"metadata": {},
2828
"source": [
2929
"## dewtemp_trh\n",
30-
"NCL's `dewtemp_trh` calculates the dew point temperature given temperature and relative humidity using the equations from John Dutton's _\"Ceaseless Wind\"_ (pg. 273-274){footcite}`dutton_1986` and returns a temperature in Kelvin\n",
30+
"NCL's `dewtemp_trh` calculates the dew point temperature given temperature and relative humidity using the equations from John Dutton's _\"Ceaseless Wind\"_ (pg. 273-274){footcite}`dutton_1986` and returns a temperature in Kelvin.\n",
31+
"\n",
32+
"Where, for the gas constant of water vapor ({math}`R_{v}`)of 461.5 {math}`\\frac{J}{K*kg}` ({math}`\\frac{461.5}{1000 * 4.186} \\frac{cal}{g*k}`), the empirical value of the latent heat (pg. 273, Problem 8.3.1) is:\n",
33+
"\n",
34+
"{math}`L_{lv} = 597.3 - 0.57(T - 273)`\n",
35+
"\n",
36+
"So, when {math}`h` is the relative humidity, the dew point temperature (pg. 273, Equation 6, solved for as {math}`T_D`) is:\n",
37+
"\n",
38+
"{math}`T_D = \\frac{T * L_{lv}}{L_{lv} - R_{v}Tlog(h)}`\n",
3139
"\n",
3240
"<div class=\"admonition alert alert-info\">\n",
3341
" <p class=\"admonition-title\" style=\"font-weight:bold\">Important Note</p>\n",
@@ -78,7 +86,15 @@
7886
"source": [
7987
"## daylight_fao56\n",
8088
"\n",
81-
"NCL's `daylight_fao56` calculates the maximum number of daylight hours as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 34)](https://www.fao.org/4/X0490E/x0490e07.htm#chapter%203%20%20%20meteorological%20data) {footcite}`allan_fao_1998`"
89+
"NCL's `daylight_fao56` calculates the maximum number of daylight hours as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 34)](https://www.fao.org/4/X0490E/x0490e07.htm#chapter%203%20%20%20meteorological%20data) {footcite}`allan_fao_1998`.\n",
90+
"\n",
91+
"Where the maximum number of daylight hours, {math}`N`, is:\n",
92+
"\n",
93+
"{math}`N = \\frac{24}{{\\pi}} {\\omega}_{s}`\n",
94+
"\n",
95+
"And {math}`{\\omega}_{s}` is the sunset hour angle in radians [(Chapter 3, Equation 25)](https://www.fao.org/4/X0490E/x0490e07.htm#chapter%203%20%20%20meteorological%20data) {footcite}`allan_fao_1998` which is calculated from the latitude of the observer on Earth ({math}`\\phi`) and the sun's declination ({math}`\\delta`):\n",
96+
"\n",
97+
"{math}`{\\omega}_{s} = arccos[-tan({\\phi})tan({\\delta})]`"
8298
]
8399
},
84100
{
@@ -125,7 +141,11 @@
125141
"source": [
126142
"## satvpr_temp_fao56\n",
127143
"\n",
128-
"NCL's `satvpr_temp_fao56` calculates saturation vapor pressure using temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 11)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`"
144+
"NCL's `satvpr_temp_fao56` calculates saturation vapor pressure using temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 11)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`.\n",
145+
"\n",
146+
"Where the saturation vapor pressure, {math}`e^°` (kPa), at air temperature {math}`T` (°C) is calculated as:\n",
147+
"\n",
148+
"{math}`e^°(T) = 0.6108 {\\exp}[\\frac{17.27T}{T + 237.3}]`"
129149
]
130150
},
131151
{
@@ -169,7 +189,11 @@
169189
"source": [
170190
"## satvpr_tdew_fao56\n",
171191
"\n",
172-
"NCL's `satvpr_tdew_fao56` calculates the actual saturation vapor pressure using dewpoint temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 14)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`"
192+
"NCL's `satvpr_tdew_fao56` calculates the actual saturation vapor pressure using dewpoint temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 14)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`.\n",
193+
"\n",
194+
"Where the actual vapor pressure, {math}`e_{a}` (kPa), is saturation vapor pressure at a specific dewpoint temperature, {math}`T_{dew}` (°C), which is calculated as:\n",
195+
"\n",
196+
"{math}`e_{a} = e^°(T_{dew}) = 0.6108 {\\exp}[\\frac{17.27 T_{dew}}{T_{dew} + 237.3}]`"
173197
]
174198
},
175199
{
@@ -206,7 +230,11 @@
206230
"source": [
207231
"## satvpr_slope_fao56\n",
208232
"\n",
209-
"NCL's `satvpr_slope_fao56` calculates the slope of the saturation vapor pressure curve as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 13)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`"
233+
"NCL's `satvpr_slope_fao56` calculates the slope of the saturation vapor pressure curve as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 [(Chapter 3, Equation 13)](https://www.fao.org/4/x0490e/x0490e07.htm) {footcite}`allan_fao_1998`.\n",
234+
"\n",
235+
"Where the slope of saturation vapor pressure curve, {math}`{\\Delta}` (kPa), at air temperature {math}`T` (°C) is calculated as:\n",
236+
"\n",
237+
"{math}`{\\Delta} = \\frac{4098 (0.6108 {\\exp}[\\frac{17.27T}{T + 237.3}])}{(T + 237.3)^2}`"
210238
]
211239
},
212240
{

0 commit comments

Comments
 (0)