|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "# Here, we want to create mask-files\n", |
| 10 | + "# from the geojson-files" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "metadata": {}, |
| 16 | + "source": [ |
| 17 | + "# GeoJSON --> .png" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "markdown", |
| 22 | + "metadata": {}, |
| 23 | + "source": [ |
| 24 | + "Plot and save the given coordinates in GeoJSON files." |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": null, |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "import numpy as np\n", |
| 34 | + "import matplotlib.pyplot as plt\n", |
| 35 | + "import os\n", |
| 36 | + "import json\n", |
| 37 | + "import geoio" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": null, |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "ResimPATH = 'TRAINING TIF-FILE PATH/Train/AOI_2_Vegas_Train/RGB-PanSharpen' \n", |
| 47 | + "# All the pictures from the given path\n", |
| 48 | + "ResimAdlari = os.listdir(ResimPATH)\n", |
| 49 | + "\n", |
| 50 | + "GeoJSONPATH = 'TRAINING GEOJSON-FILE PATH/Train/AOI_2_Vegas_Train/geojson/buildings'\n", |
| 51 | + "# All the geojson-files from the given path\n", |
| 52 | + "GeoAdlari = os.listdir(GeoJSONPATH)" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "code", |
| 57 | + "execution_count": null, |
| 58 | + "metadata": { |
| 59 | + "scrolled": false |
| 60 | + }, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "# DosyaNumarasi takes the number from 0 to how big your training dataset\n", |
| 64 | + "for DosyaNumarasi in range(len(GeoAdlari)):\n", |
| 65 | + "\n", |
| 66 | + " # data holds the info for the each GeoJSON-file\n", |
| 67 | + " with open(GeoJSONPATH+'/'+GeoAdlari[DosyaNumarasi]) as f:\n", |
| 68 | + " data = json.load(f)\n", |
| 69 | + " \n", |
| 70 | + " # RGBTIFResmi holds the info for each TIF-file\n", |
| 71 | + " RGBTIFResmi = geoio.GeoImage(ResimPATH+'/'+ResimAdlari[DosyaNumarasi])\n", |
| 72 | + "\n", |
| 73 | + " cokgenler = [] # Hold the coordinates for each building in the picture.\n", |
| 74 | + " # (Outside for loop is for each picture, and here, cokgenler\n", |
| 75 | + " # will hold the coordinates for each building in one picture.)\n", |
| 76 | + " types = [] # Holds the type of the buldings (MultiPolygon - Partial Building - Point)\n", |
| 77 | + " # We are not interested in the points.\n", |
| 78 | + " \n", |
| 79 | + " # Create the pane size of 650x650 to put the figures from geojson-file. Otherwise,\n", |
| 80 | + " # the buildings may be flipped or they may saved one by one \n", |
| 81 | + " arkaPlan = np.zeros([650,650])\n", |
| 82 | + " plt.imshow(arkaPlan)\n", |
| 83 | + "\n", |
| 84 | + " try:\n", |
| 85 | + " # We do not know how many buildings the picture includes.\n", |
| 86 | + " # So, we just give very big number to make sure that we utilized\n", |
| 87 | + " # all the buildings in one picture.\n", |
| 88 | + " # In short, bina keeps what order the building is.\n", |
| 89 | + " for bina in range(2000):\n", |
| 90 | + " tip = str(data['features'][bina]['geometry']['type'])\n", |
| 91 | + " types.append(tip) # Append all the type of the buildings\n", |
| 92 | + "\n", |
| 93 | + " # If type is point, do not do anything\n", |
| 94 | + " if tip == ('Point'):\n", |
| 95 | + " pass\n", |
| 96 | + " \n", |
| 97 | + " # If type is MultiPolygon, cokgenler will hold the coordinates\n", |
| 98 | + " elif tip == ('MultiPolygon'):\n", |
| 99 | + " kucukBinalar = (data['features'][bina]['geometry']['coordinates'])\n", |
| 100 | + " for b in range(len(kucukBinalar)): \n", |
| 101 | + " cokgenler.append(kucukBinalar[b])\n", |
| 102 | + " \n", |
| 103 | + " # For the rest of the types, cokgenler will hold the coordinates again\n", |
| 104 | + " else:\n", |
| 105 | + " cokgenler.append(data['features'][bina]['geometry']['coordinates'])\n", |
| 106 | + "\n", |
| 107 | + " except IndexError:\n", |
| 108 | + " # If we utilized all the buildings in the given picture,\n", |
| 109 | + " # lest create mask for each one.\n", |
| 110 | + " \n", |
| 111 | + " # cokgenBina holds the each building's coordinates\n", |
| 112 | + " for cokgenBina in cokgenler: \n", |
| 113 | + "\n", |
| 114 | + " # binaNoktalari holds the individual edge coordinates for each building.\n", |
| 115 | + " for binaNoktalari in cokgenBina:\n", |
| 116 | + " \n", |
| 117 | + " # To hold the edge coordinates (in pixel form)\n", |
| 118 | + " doldurX = []\n", |
| 119 | + " doldurY = []\n", |
| 120 | + "\n", |
| 121 | + " # noktas holds x and y for each edge coordinate\n", |
| 122 | + " for noktas in binaNoktalari:\n", |
| 123 | + " \n", |
| 124 | + " # Convert Latitude&Longitude to the pixels\n", |
| 125 | + " xPixel, yPixel = RGBTIFResmi.proj_to_raster(noktas[0], noktas[1])\n", |
| 126 | + " \n", |
| 127 | + " # The pixels may be 650 which defaces the masks.\n", |
| 128 | + " xPixel = 649 if xPixel > 649 else xPixel\n", |
| 129 | + " yPixel = 649 if yPixel > 649 else yPixel\n", |
| 130 | + " \n", |
| 131 | + " # Keep x and y in pixel form\n", |
| 132 | + " doldurX.append(xPixel)\n", |
| 133 | + " doldurY.append(yPixel)\n", |
| 134 | + " \n", |
| 135 | + " # To paint between given pixel values\n", |
| 136 | + " plt.fill_between(doldurX, doldurY, facecolor='red')\n", |
| 137 | + " \n", |
| 138 | + " # To remove white area around matplotlib figure\n", |
| 139 | + " fig = plt.figure(1)\n", |
| 140 | + " extent = plt.gca().get_window_extent().transformed(fig.dpi_scale_trans.inverted())\n", |
| 141 | + "\n", |
| 142 | + " # Adjust the DPI for 650x650\n", |
| 143 | + " # and save the figure\n", |
| 144 | + " # While saving, you should put them in order; 0 to ...\n", |
| 145 | + " fig.savefig('Where to save the figure '+str(DosyaNumarasi)+'.png', bbox_inches=extent, dpi=215.24)\n", |
| 146 | + " \n", |
| 147 | + " # Close the figure after an image is done.\n", |
| 148 | + " plt.close()" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "code", |
| 153 | + "execution_count": null, |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [], |
| 156 | + "source": [] |
| 157 | + } |
| 158 | + ], |
| 159 | + "metadata": { |
| 160 | + "kernelspec": { |
| 161 | + "display_name": "Python 3", |
| 162 | + "language": "python", |
| 163 | + "name": "python3" |
| 164 | + }, |
| 165 | + "language_info": { |
| 166 | + "codemirror_mode": { |
| 167 | + "name": "ipython", |
| 168 | + "version": 3 |
| 169 | + }, |
| 170 | + "file_extension": ".py", |
| 171 | + "mimetype": "text/x-python", |
| 172 | + "name": "python", |
| 173 | + "nbconvert_exporter": "python", |
| 174 | + "pygments_lexer": "ipython3", |
| 175 | + "version": "3.6.7" |
| 176 | + } |
| 177 | + }, |
| 178 | + "nbformat": 4, |
| 179 | + "nbformat_minor": 2 |
| 180 | +} |
0 commit comments