|
624 | 624 | "&= \\sum_i^n \\text{Var}(x_i)\\text{Var}(w_i) = \\left( n \\text{Var}(w) \\right) \\text{Var}(x) \\\\\\\\\n",
|
625 | 625 | "&\\text{Thus, due to }\\text{Var}(aX) = a^2\\text{Var}(X),\\text{ we need to have }a = \\frac{1}{\\sqrt{n}}\n",
|
626 | 626 | "\\end{align}$$\n",
|
| 627 | + "For uniform distribution\n", |
| 628 | + "$$w_i\\sim U\\big[-\\frac{\\sqrt{3}}{\\sqrt{n_{i}}},\\frac{\\sqrt{3}}{\\sqrt{n_{i} }}\\big]$$\n", |
| 629 | + "Kumar initialization\n", |
| 630 | + " $w_i \\sim N(0,\\frac{16}{n_{i+1}}$ \n", |
627 | 631 | " </ul> \n",
|
628 |
| - "<!-- https://cs231n.github.io/neural-networks-2/#batchnorm -->" |
| 632 | + "<!-- https://cs231n.github.io/neural-networks-2/#batchnorm \n", |
| 633 | + "https://towardsdatascience.com/weight-initialization-in-deep-neural-networks-268a306540c0 -->" |
629 | 634 | ]
|
630 | 635 | },
|
631 | 636 | {
|
|
652 | 657 | "where $n_i$ - is the number of weights in layer.<br>\n",
|
653 | 658 | "\n",
|
654 | 659 | "</ul>\n",
|
655 |
| - "<li><b>Xavier uniform initialization are recommended for sigmoid layer.</b><ul>\n", |
| 660 | + "<li><b>Xavier uniform initialization are recommended for sigmoid layer.</b><ul> \n", |
656 | 661 | "<li> in some cases of <b>tanh layer</b> it is recommended to use $w_i\\sim N\\big[0,\\frac{1}{{n_{i}}}\\big]$\n",
|
| 662 | + "<ul>\n", |
657 | 663 | "<!-- \n",
|
658 | 664 | "https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79\n",
|
659 | 665 | "https://pouannes.github.io/blog/initialization/\n",
|
660 |
| - "https://www.deeplearning.ai/ai-notes/initialization/ -->" |
| 666 | + "https://www.deeplearning.ai/ai-notes/initialization/ \n", |
| 667 | + "https://towardsdatascience.com/weight-initialization-in-deep-neural-networks-268a306540c0-->" |
661 | 668 | ]
|
662 | 669 | },
|
663 | 670 | {
|
|
773 | 780 | "width": "165px"
|
774 | 781 | },
|
775 | 782 | "toc_section_display": true,
|
776 |
| - "toc_window_display": false |
| 783 | + "toc_window_display": true |
777 | 784 | }
|
778 | 785 | },
|
779 | 786 | "nbformat": 4,
|
|
0 commit comments