-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_utils.py
175 lines (151 loc) · 6.03 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
from typing import Any, Dict, Optional
import pandas as pd
from dotenv import load_dotenv
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from pymongo import MongoClient
from prompts.utils import DATASET_ANALYSIS_PROMPT
from states.main import KaggleProblemState
class DatasetAnalysis(BaseModel):
quantitative_analysis: str = Field(
description="Detailed quantitative analysis of the dataset"
)
qualitative_analysis: str = Field(
description="Detailed qualitative analysis of the dataset"
)
feature_recommendations: str = Field(
description="Recommendations for feature engineering and preprocessing"
)
class DataUtils:
def __init__(
self,
config: Dict[str, Any],
llm: ChatOpenAI,
mongo_client: Optional[MongoClient] = None,
):
self.config = config
self.llm = llm
print(llm.model_name, llm.temperature)
self.mongo_client = mongo_client
self.dataset_analysis_prompt = ChatPromptTemplate.from_messages(
[("system", DATASET_ANALYSIS_PROMPT)]
)
self.output_parser = PydanticOutputParser(pydantic_object=DatasetAnalysis)
def analyze_dataset(
self, dataset: pd.DataFrame, dataset_info: str
) -> DatasetAnalysis:
data_initial_info = self._generate_dataset_overview(dataset)
dataset_head = dataset.head().to_markdown()
print(self.llm.model_name, self.llm.temperature)
format_instructions = self.output_parser.get_format_instructions()
response = (
self.dataset_analysis_prompt | self.llm | self.output_parser
).invoke(
{
"data_initial_info": data_initial_info,
"dataset_overview": dataset_info,
"dataset_head": dataset_head,
"format_instructions": format_instructions,
},
config=self.config,
)
return response
def _generate_dataset_overview(self, dataset: pd.DataFrame) -> str:
overview = [
f"Shape: {dataset.shape}",
f"Columns: {dataset.columns.tolist()}",
f"Data Types:\n{dataset.dtypes}",
f"Missing Values:\n{dataset.isnull().sum()}",
f"Unique Values:\n{dataset.nunique()}",
f"Numerical Columns Summary:\n{dataset.describe().to_string()}",
]
return "\n".join(overview)
def __call__(self, state: KaggleProblemState) -> Dict[str, str]:
if self.mongo_client:
db = self.mongo_client.get_database("challenge_data")
collection = db.get_collection("data_utils_results")
if not state.challenge_url.endswith("/"):
state.challenge_url += "/"
data = collection.find_one({"challenge_url": state.challenge_url})
if data:
return {k: v for k, v in data.items() if k != "_id"}
dataset = self._load_dataset(state.dataset_path)
if dataset is None:
return {"error": "Failed to load dataset"}
result = self.analyze_dataset(dataset, state.problem_description)
analysis_result = self._generate_dataset_overview(dataset)
output = {
"challenge_url": state.challenge_url,
"dataset_info": analysis_result,
"quantitative_analysis": result.quantitative_analysis,
"qualitative_analysis": result.qualitative_analysis,
"feature_recommendations": result.feature_recommendations,
}
# Write result back to MongoDB if available
if self.mongo_client:
try:
if data:
collection.update_one(
{"challenge_url": state.challenge_url},
{"$set": output},
)
else:
collection.insert_one(output)
except Exception as e:
print(f"Error writing result to MongoDB: {str(e)}")
return output
def _load_dataset(self, dataset_path: str) -> Optional[pd.DataFrame]:
dataset_path = "./input/train.csv"
# Fallback to loading from CSV
try:
return pd.read_csv(dataset_path)
except FileNotFoundError:
print(f"Error: Dataset file not found at {dataset_path}")
except pd.errors.EmptyDataError:
print(f"Error: The dataset file at {dataset_path} is empty")
except Exception as e:
print(f"Error loading dataset: {str(e)}")
return None
def main():
load_dotenv(override=True)
# proxy_url = os.getenv("HTTP_PROXY_URL")
# proxy = httpx.Client(proxies=proxy_url) if proxy_url else None
try:
llm = ChatOpenAI(
# model=os.getenv("OPENAI_MODEL", "gpt-4o"),
model="gpt-4o",
# http_client=proxy,
temperature=float(os.getenv("OPENAI_TEMPERATURE", "0.0")),
)
except ValueError as e:
print(f"Error initializing ChatOpenAI: {str(e)}")
return
config = {
"additional_config_key": "value" # Replace with actual configuration if needed
}
mongo_uri = os.getenv("MONGO_URI")
data_utils = DataUtils(config=config, llm=llm, mongo_uri=mongo_uri)
dataset_path = "./house_prices.csv"
problem_description = """
Predict house prices based on various features.
The evaluation metric is Root Mean Squared Error (RMSE).
The dataset contains information about house features and their corresponding sale prices.
"""
state = KaggleProblemState(
index=-1,
problem_description=problem_description,
dataset_path=dataset_path,
evaluation_metric="r2_score",
file_env_var="MY_FILE",
)
try:
result = data_utils(state)
print("Dataset Information:")
print(result["dataset_info"])
except Exception as e:
print(f"An error occurred while running DataUtils: {e}")
if __name__ == "__main__":
main()