BY MUZAMMUL(ZJU)
Enhancing Tiny Object Detection Without Fine-Tuning: Dynamic Adaptive Guided Object Inference Slicing Framework with Latest YOLO Models and RT-DETR Transformer
Here is a demonstration video for the project:
(https://youtu.be/T5t5eb_w0S4)
Section1: WITHOUT FINE TUNING 15% DATASET SUBSET VISDRONE2019Train DATASET
This benchmark evaluates Full Image Inference Detection vs. ** Guided-Object Inference Slicing (GOIS)** for small object detection using COCO metrics. Results are based on a subset of 970 images (15%) from the VisDrone-2019-Train dataset.
Clone this repository to access the required files:[clone] (https://github.com/MMUZAMMUL/Small-Object-Detection-Benchmarks-Full_ImageVsGOIS.git) cd Small-Object-Detection-Benchmarks-Full_ImageVsGOIS
- pip install pycocotools .
- Open evaluation.py .
- Update the paths: . Ground Truth Path: Set the path for Ground_Truth & Prediction Path: Download the prediction .json file for either Full Image or GOIS benchmarks and set its path..
- Run python evaluation.py
Model | Predictions-Link | [email protected]:0.95 | [email protected] | [email protected] | mAP-Small | mAP-Medium | mAP-Large | AR@1 | AR@10 | AR@100 | AR-Small | AR-Medium | AR-Large | F1 Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YOLO11 | Download | 0.12 | 0.18 | 0.13 | 0.02 | 0.23 | 0.57 | 0.12 | 0.27 | 0.29 | 0.04 | 0.49 | 1.09 | 0.17 |
RT-DETR-L | Download | 0.43 | 0.67 | 0.44 | 0.11 | 0.67 | 1.34 | 0.32 | 0.81 | 1.01 | 0.44 | 1.44 | 2.45 | 0.61 |
YOLOv10 | Download | 0.12 | 0.17 | 0.13 | 0.02 | 0.18 | 0.63 | 0.13 | 0.25 | 0.27 | 0.02 | 0.38 | 1.18 | 0.17 |
YOLOv9 | Download | 0.41 | 0.56 | 0.45 | 0.06 | 0.72 | 1.33 | 0.30 | 0.65 | 0.73 | 0.17 | 1.20 | 2.22 | 0.52 |
YOLOv8n | Download | 0.14 | 0.20 | 0.14 | 0.03 | 0.24 | 0.54 | 0.15 | 0.29 | 0.32 | 0.04 | 0.50 | 1.22 | 0.19 |
YOLOv5n | Download | 0.18 | 0.27 | 0.19 | 0.03 | 0.32 | 0.79 | 0.16 | 0.36 | 0.41 | 0.10 | 0.67 | 1.51 | 0.25 |
YOLOv8s-WorldV2 | Download | 0.23 | 0.34 | 0.23 | 0.04 | 0.42 | 0.90 | 0.21 | 0.42 | 0.46 | 0.11 | 0.75 | 1.79 | 0.30 |
Model | Predictions-Link | [email protected]:0.95 | [email protected] | [email protected] | mAP-Small | mAP-Medium | mAP-Large | AR@1 | AR@10 | AR@100 | AR-Small | AR-Medium | AR-Large | F1 Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YOLO11 | Download | 0.33 | 0.51 | 0.34 | 0.10 | 0.57 | 0.96 | 0.27 | 0.68 | 0.87 | 0.33 | 1.40 | 1.93 | 0.47 |
RT-DETR-L | Download | 0.61 | 0.94 | 0.63 | 0.22 | 0.95 | 1.49 | 0.46 | 1.16 | 1.71 | 1.03 | 2.25 | 2.73 | 0.90 |
YOLOv10 | Download | 0.31 | 0.48 | 0.33 | 0.08 | 0.56 | 0.93 | 0.26 | 0.61 | 0.76 | 0.27 | 1.25 | 1.85 | 0.44 |
YOLOv9 | Download | 0.53 | 0.76 | 0.58 | 0.18 | 0.90 | 1.18 | 0.40 | 0.91 | 1.16 | 0.53 | 1.79 | 2.21 | 0.73 |
YOLOv8n | Download | 0.30 | 0.47 | 0.32 | 0.13 | 0.53 | 0.97 | 0.28 | 0.67 | 0.84 | 0.39 | 1.34 | 1.93 | 0.44 |
YOLOv5n | Download | 0.38 | 0.58 | 0.41 | 0.16 | 0.65 | 1.02 | 0.29 | 0.71 | 0.93 | 0.51 | 1.44 | 1.93 | 0.54 |
YOLOv8s-WorldV2 | Download | 0.40 | 0.60 | 0.43 | 0.16 | 0.68 | 1.01 | 0.36 | 0.84 | 1.03 | 0.48 | 1.59 | 1.97 | 0.58 |
Model | [email protected]:0.95 %↑ | [email protected] %↑ | [email protected] %↑ | mAP-Small %↑ | mAP-Medium %↑ | mAP-Large %↑ | AR@1 %↑ | AR@10 %↑ | AR@100 %↑ | AR-Small %↑ | AR-Medium %↑ | AR-Large %↑ | F1 Score %↑ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YOLO11 | 175.0 | 183.33 | 161.54 | 400.0 | 147.83 | 68.42 | 125.0 | 151.85 | 200.0 | 725.0 | 185.71 | 77.06 | 176.47 |
RT-DETR-L | 41.86 | 40.3 | 43.18 | 100.0 | 41.79 | 11.19 | 43.75 | 43.21 | 69.31 | 134.09 | 56.25 | 11.43 | 47.54 |
YOLOv10 | 158.33 | 182.35 | 153.85 | 300.0 | 211.11 | 47.62 | 100.0 | 144.0 | 181.48 | 1250.0 | 228.95 | 56.78 | 158.82 |
YOLOv9 | 29.27 | 35.71 | 28.89 | 200.0 | 25.0 | -11.28 | 33.33 | 40.0 | 58.9 | 211.76 | 49.17 | -0.45 | 40.38 |
YOLOv8n | 114.29 | 135.0 | 128.57 | 333.33 | 120.83 | 79.63 | 86.67 | 131.03 | 162.5 | 875.0 | 168.0 | 58.2 | 131.58 |
YOLOv5n | 111.11 | 114.81 | 115.79 | 433.33 | 103.12 | 29.11 | 81.25 | 97.22 | 126.83 | 410.0 | 114.93 | 27.81 | 116.0 |
YOLOv8s-WorldV2 | 73.91 | 76.47 | 86.96 | 300.0 | 61.9 | 12.22 | 71.43 | 100.0 | 123.91 | 336.36 | 112.0 | 10.06 | 93.33 |
This table presents the Average Precision (AP) and Average Recall (AR) metrics for five models (YOLO11, YOLOv10, YOLOv9, YOLOv8, YOLOv5). Each model includes three rows: FI-Det results, GOIS-Det results, and % improvement achieved by GOIS. Downloadable links for FI-Det and GOIS-Det results are included in the first column next to the model name.
Model | FI-Det File | GOIS-Det File | AP@[IoU=0.50:0.95] | AP@[IoU=0.50] | AP@[IoU=0.75] | AP-Small | AP-Medium | AP-Large | AR@1 | AR@10 | AR@100 | AR-Small | AR-Medium | AR-Large | F1 Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YOLO11 | Download | Download | 0.12 | 0.171 | 0.119 | 0.024 | 0.159 | 0.283 | 0.045 | 0.112 | 0.137 | 0.035 | 0.208 | 0.349 | 0.17 |
0.123 | 0.193 | 0.132 | 0.072 | 0.164 | 0.151 | 0.054 | 0.152 | 0.208 | 0.132 | 0.274 | 0.227 | 0.47 | |||
↑ 12.01% | ↑ 12.38% | ↑ 11.26% | ↑ 196.90% | ↑ 2.94% | ↓ 46.71% | ↑ 18.81% | ↑ 35.46% | ↑ 51.17% | ↑ 278.66% | ↑ 31.44% | ↓ 34.90% | ↑ 176.47% | |||
YOLOv10 | Download | Download | 0.091 | 0.140 | 0.100 | 0.022 | 0.133 | 0.222 | 0.041 | 0.097 | 0.117 | 0.029 | 0.178 | 0.278 | 0.17 |
0.099 | 0.156 | 0.107 | 0.061 | 0.130 | 0.100 | 0.047 | 0.127 | 0.172 | 0.109 | 0.219 | 0.159 | 0.44 | |||
↑ 8.88% | ↑ 11.40% | ↑ 7.08% | ↑ 176.54% | ↓ 2.30% | ↓ 54.85% | ↑ 14.18% | ↑ 31.01% | ↑ 46.09% | ↑ 279.22% | ↑ 22.50% | ↓ 42.82% | ↑ 158.82% | |||
YOLOv9 | Download | Download | 0.212 | 0.322 | 0.232 | 0.079 | 0.320 | 0.472 | 0.080 | 0.211 | 0.252 | 0.103 | 0.387 | 0.551 | 0.17 |
0.187 | 0.295 | 0.199 | 0.130 | 0.242 | 0.171 | 0.079 | 0.231 | 0.310 | 0.234 | 0.396 | 0.239 | 0.44 | |||
↓ 11.93% | ↓ 8.15% | ↓ 14.10% | ↑ 64.98% | ↓ 24.20% | ↓ 63.83% | ↓ 1.07% | ↑ 9.85% | ↑ 22.94% | ↑ 127.93% | ↑ 2.38% | ↓ 56.64% | ↑ 158.82% | |||
YOLOv8 | Download | Download | 0.108 | 0.168 | 0.118 | 0.025 | 0.158 | 0.290 | 0.046 | 0.113 | 0.136 | 0.032 | 0.209 | 0.365 | 0.17 |
0.121 | 0.193 | 0.130 | 0.070 | 0.163 | 0.149 | 0.056 | 0.158 | 0.211 | 0.131 | 0.281 | 0.220 | 0.47 | |||
↑ 11.82% | ↑ 14.46% | ↑ 10.03% | ↑ 178.14% | ↑ 3.22% | ↓ 48.67% | ↑ 22.33% | ↑ 40.05% | ↑ 55.92% | ↑ 308.02% | ↑ 34.65% | ↓ 39.72% | ↑ 176.47% | |||
YOLOv5 | Download | Download | 0.096 | 0.150 | 0.104 | 0.019 | 0.138 | 0.270 | 0.040 | 0.098 | 0.119 | 0.026 | 0.181 | 0.329 | 0.17 |
0.109 | 0.174 | 0.116 | 0.059 | 0.150 | 0.134 | 0.050 | 0.139 | 0.188 | 0.111 | 0.254 | 0.205 | 0.54 | |||
↑ 13.61% | ↑ 16.09% | ↑ 11.36% | ↑ 209.43% | ↑ 9.07% | ↓ 50.16% | ↑ 26.22% | ↑ 42.71% | ↑ 58.12% | ↑ 329.90% | ↑ 40.05% | ↓ 37.62% | ↑ 216.47% |
Notes:
- ↑ represents percentage improvement achieved by GOIS-Det over FI-Det.
- ↓ represents performance degradation in GOIS-Det compared to FI-Det.
- Replace
#
inDownload
links with the actual URLs for downloadable files.