-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem-21.py
54 lines (41 loc) · 1.89 KB
/
problem-21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
"""
Amicable numbers
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable
numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284.
The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
---------------------
Дружественные числа
Пусть d(n) определяется как сумма делителей n (числа меньше n, делящие n нацело).
Если d(a) = b и d(b) = a, где a ≠ b, то a и b называются дружественной парой, а каждое из чисел a и b - дружественным
числом.
Например, делителями числа 220 являются 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, поэтому d(220) = 284. Делители 284 -
1, 2, 4, 71, 142, поэтому d(284) = 220.
Подсчитайте сумму всех дружественных чисел меньше 10000.
"""
def main():
BIG_NUMBER = 10000
divisors_sum = [0, 1]
browsed = []
amicables = []
amicables_sum = 0
for x in xrange(2, BIG_NUMBER):
temp = 0
for y in range(1, int(x/2) + 1):
if x % y == 0:
temp += y
divisors_sum.append(temp)
for x in xrange(1, BIG_NUMBER):
if x not in browsed:
sum = divisors_sum[x]
if sum <= len(divisors_sum) and divisors_sum[sum] == x and sum != x:
amicables_sum += sum + x
amicables.extend([sum, x])
browsed.extend([sum, x])
print amicables_sum
print amicables
if __name__ == "__main__":
main()