Skip to content

Latest commit

 

History

History
executable file
·
101 lines (75 loc) · 3.03 KB

detection.md

File metadata and controls

executable file
·
101 lines (75 loc) · 3.03 KB

目标检测PascalVOC

目录

数据格式

在PaddleX中,目标检测支持PascalVOC数据集格式。

数据文件夹结构

数据集按照如下方式进行组织,原图均放在同一目录,如JPEGImages,标注的同名xml文件均放在同一目录,如Annotations,示例如下:

MyDataset/ # 目标检测数据集根目录
|--JPEGImages/ # 原图文件所在目录
|  |--1.jpg
|  |--2.jpg
|  |--...
|  |--...
|
|--Annotations/ # 标注文件所在目录
|  |--1.xml
|  |--2.xml
|  |--...
|  |--...

训练集、验证集列表和类别标签列表

为了用于训练,我们需要在MyDataset目录下准备train_list.txt, val_list.txtlabels.txt三个文件,分别用于表示训练集列表,验证集列表和类别标签列表。点击下载目标检测示例数据集查看具体的数据格式。

  • labels.txt

labels.txt用于列出所有类别,类别对应行号表示模型训练过程中类别的id(行号从0开始计数),例如labels.txt为以下内容

dog
cat
snake

表示该检测数据集中共有3个目标类别,分别为dogcatsnake,在模型训练中dog对应的类别id为0, cat对应1,以此类推

  • train_list.txt

train_list.txt列出用于训练时的图片集合,与其对应的标注文件,示例如下

JPEGImages/1.jpg Annotations/1.xml
JPEGImages/2.jpg Annotations/2.xml
... ...

其中第一列为原图相对MyDataset的相对路径,第二列为标注文件相对MyDataset的相对路径

  • val_list.txt

val_list列出用于验证时的图片集成,与其对应的标注文件,格式与val_list.txt一致

数据集加载

训练过程中,PaddleX加载数据集的示例代码如下:

import paddlex as pdx
from paddlex import transforms as T

train_transforms = T.Compose([
    T.RandomResizeByShort(
        short_sizes=[640, 672, 704, 736, 768, 800],
        max_size=1333,
        interp='CUBIC'),
    T.RandomHorizontalFlip(),
    T.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

eval_transforms = T.Compose([
    T.ResizeByShort(
        short_size=800, max_size=1333, interp='CUBIC'),
    T.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])


train_dataset = pdx.datasets.VOCDetection(
                        data_dir='./MyDataset',
                        file_list='./MyDataset/train_list.txt',
                        label_list='./MyDataset/labels.txt',
                        transforms=train_transforms)
eval_dataset = pdx.datasets.VOCDetection(
                        data_dir='./MyDataset',
                        file_list='./MyDataset/val_list.txt',
                        label_list='MyDataset/labels.txt',
                        transforms=eval_transforms)