-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcalibrateKDEPixels.py
632 lines (569 loc) · 29.6 KB
/
calibrateKDEPixels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# will use kde method to finding most likely TOT
# for the pixel calibration
from optparse import OptionParser
from scipy.stats import gaussian_kde
import numpy as np
import matplotlib.pyplot as plt
import ROOT as R
from os import environ
import getpass
import math
import itertools
import Constants as C
parser = OptionParser()
parser.add_option("-b", "--assembly",
help="Assembly name", dest="ASSEMBLY")
parser.add_option("-s", "--source",
help="Source name", dest="SOURCE")
(options, args) = parser.parse_args()
if(options.ASSEMBLY):
assembly=options.ASSEMBLY
else :
print "Please specify assembly"
print "choose from", C.known_assemblies
parser.print_help()
exit()
if assembly not in C.known_assemblies:
print "Assembly not recognised"
print "choose from", C.known_assemblies
exit()
if(options.SOURCE):
source=options.SOURCE
else :
print "Please specify source"
print "choose from", C.known_sources
parser.print_help()
exit()
if source not in C.known_sources:
print "Source not recognised"
print "choose from", C.known_sources
exit()
if source in C.LNLS_sources and assembly != "A06-W0110":
print "Source only available for assembly A06-W0110"
print "please reconsider input"
exit()
# wanted to use kde_scipy function, but wouldn't work wth my scipy version
# this is a workaround which does the same
def findMostLikelyTOT(assembly,source,llim,ulim,CuInXRFMidPoint):
# Load data
home = environ['HOME']
base = "%s/eos/clicdp/data/VertexCalibration" %home
assembly_start = assembly.split("-")[0]
if source == "Fe":
rootfile = R.TFile("%s/%s/%s_SinglePixelCalibration/Fe55_%s_spc.root"%(base,assembly,assembly_start,assembly))
elif source == "Am":
rootfile = R.TFile("%s/%s/%s_SinglePixelCalibration/Am241_%s_spc.root"%(base,assembly,assembly_start,assembly))
elif source == "Cd":
rootfile = R.TFile("%s/%s/%s_SinglePixelCalibration/Cd109_%s_spc.root"%(base,assembly,assembly_start,assembly))
elif source == "CuInXRF":
if assembly == "B06-W0125":
rootfile = R.TFile("%s/%s/%s_SinglePixelCalibration/Cu_In_%s_spc.root"%(base,assembly,assembly_start,assembly))
else:
rootfile = R.TFile("%s/%s/CuIn_%s.root" %(base,assembly,assembly))
elif source == "Co":
if assembly == "B06-W0125":
rootfile = R.TFile("%s/%s/%s_SinglePixelCalibration/Co57_%s_spc.root"%(base,assembly,assembly_start,assembly))
else:
rootfile = R.TFile("%s/%s/Co57_%s.root" %(base,assembly,assembly))
elif source == "CoXRF":
rootfile = R.TFile("%s/LNLS_Analysis/SinglePixelAnalysis/root_files/%s-25V_CoXRF_CalibTree.root" %(base,assembly))
elif source == "CrXRF":
rootfile = R.TFile("%s/LNLS_Analysis/SinglePixelAnalysis/root_files/%s-25V_CrXRF_CalibTree.root" %(base,assembly))
elif source == "CuXRF":
rootfile = R.TFile("%s/LNLS_Analysis/SinglePixelAnalysis/root_files/%s-25V_CuXRF_CalibTree.root" %(base,assembly))
elif source == "FeXRF":
rootfile = R.TFile("%s/LNLS_Analysis/SinglePixelAnalysis/root_files/%s-25V_FeXRF_CalibTree.root" %(base,assembly))
elif source == "MnXRF":
rootfile = R.TFile("%s/LNLS_Analysis/SinglePixelAnalysis/root_files/%s-25V_MnXRF_CalibTree.root" %(base,assembly))
elif source == "NiXRF":
rootfile = R.TFile("%s/LNLS_Analysis/SinglePixelAnalysis/root_files/%s-25V_NiXRF_CalibTree.root" %(base,assembly))
elif source == "TiXRF":
rootfile = R.TFile("%s/LNLS_Analysis/SinglePixelAnalysis/root_files/%s-25V_TiXRF_CalibTree.root" %(base,assembly))
elif source == "VXRF":
rootfile = R.TFile("%s/LNLS_Analysis/SinglePixelAnalysis/root_files/%s-25V_VXRF_CalibTree.root" %(base,assembly))
tree = rootfile.Get("pixels")
print "got tree"
# Set up junk file to appease ROOT
username = getpass.getuser()
junkfile = R.TFile("/tmp/%s/junkfile_%s_%s.root" %(username,assembly,source),"RECREATE")
# Just keep the events we need
t0 = tree.CopyTree("tot < %i && tot > %i" %(ulim,llim))
print "copied whole tree"
nsteps = 100
x_grid = np.linspace(llim, ulim, nsteps)
step_size = (ulim-llim)/float(nsteps-1)
if source in ["Fe","Cd","CoXRF","CrXRF","CuXRF","FeXRF","MnXRF","NiXRF","TiXRF","VXRF"]:
mostlike2d_1 = []
lowersigmas_1 = []
uppersigmas_1 = []
elif source in ["Co","CuInXRF"]:
mostlike2d_1 = []
lowersigmas_1 = []
uppersigmas_1 = []
mostlike2d_2 = []
lowersigmas_2 = []
uppersigmas_2 = []
elif source in ["Am"]:
mostlike2d_1 = []
lowersigmas_1 = []
uppersigmas_1 = []
mostlike2d_2 = []
lowersigmas_2 = []
uppersigmas_2 = []
mostlike2d_3 = []
lowersigmas_3 = []
uppersigmas_3 = []
for r in xrange(C.npixX):
print "row", r
t2 = t0.CopyTree("row==%i" %r)
if source in ["Fe","Cd","CoXRF","CrXRF","CuXRF","FeXRF","MnXRF","NiXRF","TiXRF","VXRF"]:
mostlike2d_1.append([])
lowersigmas_1.append([])
uppersigmas_1.append([])
elif source in ["Co","CuInXRF"]:
mostlike2d_1.append([])
lowersigmas_1.append([])
uppersigmas_1.append([])
mostlike2d_2.append([])
lowersigmas_2.append([])
uppersigmas_2.append([])
elif source in ["Am"]:
mostlike2d_1.append([])
lowersigmas_1.append([])
uppersigmas_1.append([])
mostlike2d_2.append([])
lowersigmas_2.append([])
uppersigmas_2.append([])
mostlike2d_3.append([])
lowersigmas_3.append([])
uppersigmas_3.append([])
for c in xrange(C.npixY):
#print "col", c
peak_tots = []
peak_amps = []
peak_is = []
peak_loweris = []
peak_upperis = []
peak_ents = []
peak_lowersigmas = []
peak_uppersigmas = []
t2.SetEstimate(t2.GetEntries())
ent = t2.GetEntries("col==%i" %c)
mytot = []
if ent > 1:
t2.Draw("tot", "col==%i"%c, "goff")
v1 = t2.GetV1()
for i in xrange(ent):
mytot.append(v1[i])
try:
# The KDE calculation
density = gaussian_kde(mytot)
if density.silverman_factor() > 0.1:
density.covariance_factor = density.silverman_factor
else:
density.covariance_factor = lambda: 0.1
density._compute_covariance()
workaround = density(x_grid)
# Find peaks by finding where gradient passes through 0
grad = np.gradient(workaround)
last_grad = grad[0]
for i in xrange(1,len(grad)):
this_grad = grad[i]
if (last_grad > 0 and this_grad < 0):
peak_tots.append((x_grid[i-1] + x_grid[i]) / 2.)
peak_amps.append((workaround[i-1] + workaround[i]) / 2.)
peak_is.append(i-0.5)
last_grad = this_grad
# Remove peaks found at the edge
for i in reversed(xrange(len(peak_tots))):
if peak_is[i] < 3 or peak_is[i] > (nsteps-3):
peak_tots.pop(i)
peak_amps.pop(i)
peak_is.pop(i)
# Filter peaks to take only highest
sorted_peaks = sorted(zip(peak_amps,peak_tots,peak_is),reverse=1)
if len(peak_tots) == 0:
print "Found no peaks"
peak_amps = []
peak_tots = []
peak_is = []
elif source in ["Fe","Cd","CoXRF","CrXRF","CuXRF","FeXRF","MnXRF","NiXRF","TiXRF","VXRF"]:
peak_amps = [sorted_peaks[0][0]]
peak_tots = [sorted_peaks[0][1]]
peak_is = [sorted_peaks[0][2]]
elif source in ["Co"]:
# take the highest as peak 1, next highest to the right as peak 2
if len(sorted_peaks)>=2:
peak_amps = [sorted_peaks[0][0]]
peak_tots = [sorted_peaks[0][1]]
peak_is = [sorted_peaks[0][2]]
for i in xrange(1,len(sorted_peaks)):
if sorted_peaks[i][1] > sorted_peaks[0][1]:
peak_amps.append(sorted_peaks[i][0])
peak_tots.append(sorted_peaks[i][1])
peak_is.append(sorted_peaks[i][2])
break # only take the first
else:
peak_amps = [sorted_peaks[0][0]]
peak_tots = [sorted_peaks[0][1]]
peak_is = [sorted_peaks[0][2]]
elif source in ["CuInXRF"]:
if assembly == "A06-W0110" or assembly == "B07-W0125":
# take the two highest
if len(sorted_peaks)>=2:
peak_amps = [sorted_peaks[0][0],sorted_peaks[1][0]]
peak_tots = [sorted_peaks[0][1],sorted_peaks[1][1]]
peak_is = [sorted_peaks[0][2],sorted_peaks[1][2]]
else:
peak_amps = [sorted_peaks[0][0]]
peak_tots = [sorted_peaks[0][1]]
peak_is = [sorted_peaks[0][2]]
elif assembly == "B06-W0125" or assembly == "L04-W0125" or assembly == "D09-W0126":
# take the highest below x and the highest after x
sorted_peaks_low = []
sorted_peaks_high = []
for sorted_peak in sorted_peaks:
if sorted_peak[1] < CuInXRFMidPoint:
sorted_peaks_low.append(sorted_peak)
else:
sorted_peaks_high.append(sorted_peak)
if len(sorted_peaks_low) >= 1 and len(sorted_peaks_high) >= 1:
peak_amps = [sorted_peaks_low[0][0],sorted_peaks_high[0][0]]
peak_tots = [sorted_peaks_low[0][1],sorted_peaks_high[0][1]]
peak_is = [sorted_peaks_low[0][2],sorted_peaks_high[0][2]]
elif len(sorted_peaks_low) == 0:
peak_amps = [sorted_peaks_high[0][0]]
peak_tots = [sorted_peaks_high[0][1]]
peak_is = [sorted_peaks_high[0][2]]
else:
peak_amps = [sorted_peaks_low[0][0]]
peak_tots = [sorted_peaks_low[0][1]]
peak_is = [sorted_peaks_low[0][2]]
elif assembly == "C04-W0110":
# take the highest as peak 1, next highest to the right as peak 2
if len(sorted_peaks)>=2:
peak_amps = [sorted_peaks[0][0]]
peak_tots = [sorted_peaks[0][1]]
peak_is = [sorted_peaks[0][2]]
for i in xrange(1,len(sorted_peaks)):
if sorted_peaks[i][1] > sorted_peaks[0][1]:
peak_amps.append(sorted_peaks[i][0])
peak_tots.append(sorted_peaks[i][1])
peak_is.append(sorted_peaks[i][2])
break # only take the first
else:
peak_amps = [sorted_peaks[0][0]]
peak_tots = [sorted_peaks[0][1]]
peak_is = [sorted_peaks[0][2]]
elif source == "Am":
if len(sorted_peaks)>=3:
peak_amps = [sorted_peaks[0][0],sorted_peaks[1][0],sorted_peaks[2][0]]
peak_tots = [sorted_peaks[0][1],sorted_peaks[1][1],sorted_peaks[2][1]]
peak_is = [sorted_peaks[0][2],sorted_peaks[1][2],sorted_peaks[2][2]]
elif len(sorted_peaks)==2:
peak_amps = [sorted_peaks[0][0],sorted_peaks[1][0]]
peak_tots = [sorted_peaks[0][1],sorted_peaks[1][1]]
peak_is = [sorted_peaks[0][2],sorted_peaks[1][2]]
else:
peak_amps = [sorted_peaks[0][0]]
peak_tots = [sorted_peaks[0][1]]
peak_is = [sorted_peaks[0][2]]
# Put peaks back in TOT order
ordered_peaks = sorted(zip(peak_tots,peak_amps,peak_is))
peak_tots = [peaki[0] for peaki in ordered_peaks]
peak_amps = [peaki[1] for peaki in ordered_peaks]
peak_is = [peaki[2] for peaki in ordered_peaks]
# Calculate the upper and lower i for each peak
for i in xrange(len(peak_tots)):
if i == 0 and i == len(peak_tots)-1:
peak_loweris.append(0)
peak_upperis.append(nsteps)
elif i == 0:
peak_loweris.append(0)
peak_upperis.append(int((peak_is[i] + peak_is[i+1])/2.))
elif i == len(peak_tots)-1:
peak_loweris.append(int((peak_is[i-1] + peak_is[i])/2.))
peak_upperis.append(nsteps)
else:
peak_loweris.append(int((peak_is[i-1] + peak_is[i])/2.))
peak_upperis.append(int((peak_is[i] + peak_is[i+1])/2.))
# Calculate the entries in each peak
for i in xrange(len(peak_tots)):
if i == 0 and i == len(peak_tots)-1:
peak_ents.append(int(t2.GetEntries("tot > %i && tot < %i && col==%i" %(llim,ulim,c))))
elif i == 0:
peak_ents.append(int(t2.GetEntries("tot > %i && tot < %i && col==%i" %(llim,(peak_tots[i] + peak_tots[i+1])/2.,c))))
elif i == len(peak_tots)-1:
peak_ents.append(int(t2.GetEntries("tot > %i && tot < %i && col==%i" %((peak_tots[i-1] + peak_tots[i])/2.,ulim,c))))
else:
peak_ents.append(int(t2.GetEntries("tot > %i && tot < %i && col==%i" %((peak_tots[i-1] + peak_tots[i])/2.,(peak_tots[i] + peak_tots[i+1])/2.,c))))
# Calculate the uncertainty on each peak position
for i in xrange(len(peak_tots)):
maxindex = peak_is[i]-0.5
lowerindex = peak_is[i]-1.5
while (np.trapz(workaround[lowerindex:maxindex],x=x_grid[lowerindex:maxindex]) < 0.341*2*np.trapz(workaround[peak_loweris[i]:maxindex],x=x_grid[peak_loweris[i]:maxindex])) and (lowerindex>0):
lowerindex=lowerindex-1
lowersigma = (x_grid[maxindex]-x_grid[lowerindex]) / R.sqrt(peak_ents[i])
peak_lowersigmas.append(lowersigma)
maxindex = peak_is[i]+0.5
upperindex = peak_is[i]+1.5
while (np.trapz(workaround[maxindex:upperindex],x=x_grid[maxindex:upperindex]) < 0.341*2*np.trapz(workaround[maxindex:peak_upperis[i]],x=x_grid[maxindex:peak_upperis[i]])) and (upperindex<(nsteps-1)):
upperindex=upperindex+1
uppersigma = (x_grid[upperindex]-x_grid[maxindex]) / R.sqrt(peak_ents[i])
peak_uppersigmas.append(uppersigma)
except np.linalg.linalg.LinAlgError as err:
peak_tots.append(0) # is this necessary?
peak_lowersigmas.append(0)
peak_uppersigmas.append(0)
else:
peak_tots.append(0)
peak_lowersigmas.append(0)
peak_uppersigmas.append(0)
# Remember these peaks
if source in ["Am"]:
if len(peak_tots) == 3:
mostlike2d_1[-1].append(peak_tots[0])
mostlike2d_2[-1].append(peak_tots[1])
mostlike2d_3[-1].append(peak_tots[2])
lowersigmas_1[-1].append(peak_lowersigmas[0])
lowersigmas_2[-1].append(peak_lowersigmas[1])
lowersigmas_3[-1].append(peak_lowersigmas[2])
uppersigmas_1[-1].append(peak_uppersigmas[0])
uppersigmas_2[-1].append(peak_uppersigmas[1])
uppersigmas_3[-1].append(peak_uppersigmas[2])
elif len(peak_tots) == 2:
mostlike2d_1[-1].append(peak_tots[0])
mostlike2d_2[-1].append(0)
mostlike2d_3[-1].append(peak_tots[1])
lowersigmas_1[-1].append(peak_lowersigmas[0])
lowersigmas_2[-1].append(0)
lowersigmas_3[-1].append(peak_lowersigmas[1])
uppersigmas_1[-1].append(peak_uppersigmas[0])
uppersigmas_2[-1].append(0)
uppersigmas_3[-1].append(peak_uppersigmas[1])
elif len(peak_tots) == 1:
mostlike2d_1[-1].append(peak_tots[0])
mostlike2d_2[-1].append(0)
mostlike2d_3[-1].append(0)
lowersigmas_1[-1].append(peak_lowersigmas[0])
lowersigmas_2[-1].append(0)
lowersigmas_3[-1].append(0)
uppersigmas_1[-1].append(peak_uppersigmas[0])
uppersigmas_2[-1].append(0)
uppersigmas_3[-1].append(0)
else:
print "=============== problem length", len(peak_tots)
print peak_tots
elif source in ["Co","CuInXRF"]:
if len(peak_tots) == 2:
mostlike2d_1[-1].append(peak_tots[0])
mostlike2d_2[-1].append(peak_tots[1])
lowersigmas_1[-1].append(peak_lowersigmas[0])
lowersigmas_2[-1].append(peak_lowersigmas[1])
uppersigmas_1[-1].append(peak_uppersigmas[0])
uppersigmas_2[-1].append(peak_uppersigmas[1])
elif len(peak_tots) == 1:
if source == "CuInXRF":
if peak_tots[0] < CuInXRFMidPoint:
mostlike2d_1[-1].append(peak_tots[0])
mostlike2d_2[-1].append(0)
lowersigmas_1[-1].append(peak_lowersigmas[0])
lowersigmas_2[-1].append(0)
uppersigmas_1[-1].append(peak_uppersigmas[0])
uppersigmas_2[-1].append(0)
else:
mostlike2d_1[-1].append(0)
mostlike2d_2[-1].append(peak_tots[0])
lowersigmas_1[-1].append(0)
lowersigmas_2[-1].append(peak_lowersigmas[0])
uppersigmas_1[-1].append(0)
uppersigmas_2[-1].append(peak_uppersigmas[0])
elif source == "Co":
mostlike2d_1[-1].append(peak_tots[0])
mostlike2d_2[-1].append(0)
lowersigmas_1[-1].append(peak_lowersigmas[0])
lowersigmas_2[-1].append(0)
uppersigmas_1[-1].append(peak_uppersigmas[0])
uppersigmas_2[-1].append(0)
elif len(peak_tots) == 0:
mostlike2d_1[-1].append(0)
mostlike2d_2[-1].append(0)
lowersigmas_1[-1].append(0)
lowersigmas_2[-1].append(0)
uppersigmas_1[-1].append(0)
uppersigmas_2[-1].append(0)
else:
print "=============== problem length", len(peak_tots)
elif source in ["Fe","Cd","CoXRF","CrXRF","CuXRF","FeXRF","MnXRF","NiXRF","TiXRF","VXRF"]:
if len(peak_tots) == 1:
mostlike2d_1[-1].append(peak_tots[0])
lowersigmas_1[-1].append(peak_lowersigmas[0])
uppersigmas_1[-1].append(peak_uppersigmas[0])
else:
print "=============== problem length", len(peak_tots)
# Make plots
if c==0 and len(mytot) and r < 10:
fig, ax = plt.subplots(1, 1, figsize=(12, 12))
ax.tick_params(axis='x', pad=20)
plt.xticks(np.arange(llim,ulim+1,(ulim-llim)/5.))
ax.set_xlabel('TOT (ADC)')
for i in xrange(len(peak_tots)):
ax.text(0.01, 0.99 - (i*0.1), r'Peak: $%i \pm ^{%0.2f} _{%0.2f} \pm %0.2f$' %(peak_tots[i],peak_uppersigmas[i],peak_lowersigmas[i],step_size/2.),
verticalalignment='top', horizontalalignment='left',
transform=ax.transAxes,
fontsize=40)
ax.hist(mytot, bins=math.ceil(2.*len(mytot)**(1./3)),fc='gray',alpha=0.3,normed=True)
ax.plot(x_grid, workaround, color='blue', alpha=0.5, lw=3)
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(40)
fig.tight_layout()
fig.savefig("plots/KDEPeaks/%s_%s_PixelSpectrum_%i_0.pdf" %(assembly,source,r))
# 1D plot
mostlike1d_1 = list(itertools.chain(*mostlike2d_1))
fig, ax = plt.subplots(1, 1, figsize=(12, 12))
ax.tick_params(axis='x', pad=20)
ax.set_xlabel('Most likely TOT (ADC)')
ax.hist(mostlike1d_1, 100, fc='gray', alpha=0.3,normed=True)
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(40)
fig.tight_layout()
limits = ax.axis()
plt.xticks(np.arange(limits[0],limits[1]+1,(limits[1]-limits[0])/5.))
fig.savefig("plots/KDEPeaks/%s_%s_hist_1.pdf" %(assembly,source))
if source in ["Co","CuInXRF","Am"]:
mostlike1d_2 = list(itertools.chain(*mostlike2d_2))
fig, ax = plt.subplots(1, 1, figsize=(12, 12))
ax.tick_params(axis='x', pad=20)
ax.set_xlabel('Most likely TOT (ADC)')
ax.hist(mostlike1d_2, 100, fc='gray', alpha=0.3,normed=True)
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(40)
fig.tight_layout()
limits = ax.axis()
plt.xticks(np.arange(limits[0],limits[1]+1,(limits[1]-limits[0])/5.))
fig.savefig("plots/KDEPeaks/%s_%s_hist_2.pdf" %(assembly,source))
if source in ["Am"]:
mostlike1d_3 = list(itertools.chain(*mostlike2d_3))
fig, ax = plt.subplots(1, 1, figsize=(12, 12))
ax.tick_params(axis='x', pad=20)
ax.set_xlabel('Most likely TOT (ADC)')
ax.hist(mostlike1d_3, 100, fc='gray', alpha=0.3,normed=True)
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(40)
fig.tight_layout()
limits = ax.axis()
plt.xticks(np.arange(limits[0],limits[1]+1,(limits[1]-limits[0])/5.))
fig.savefig("plots/KDEPeaks/%s_%s_hist_3.pdf" %(assembly,source))
dx, dy = 1.0, 1.0
y, x = np.mgrid[slice(0, C.npixY + dy, dy),slice(0, C.npixX + dx, dx)]
# txt file
f = open('results/kde/%s_%s_PixelResults.txt' %(assembly,source), 'w')
for i in xrange(C.npixX):
for j in xrange(C.npixY):
if source in ["Fe","Cd","CoXRF","CrXRF","CuXRF","FeXRF","MnXRF","NiXRF","TiXRF","VXRF"]:
f.write('%f \t %f \t %f \t %f \t %f \t %f \n' %(x[i][j],y[i][j],mostlike2d_1[i][j],lowersigmas_1[i][j],uppersigmas_1[i][j],step_size/2.))
elif source in ["Co","CuInXRF"]:
f.write('%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n' %(x[i][j],y[i][j],mostlike2d_1[i][j],lowersigmas_1[i][j],uppersigmas_1[i][j],mostlike2d_2[i][j],lowersigmas_2[i][j],uppersigmas_2[i][j],step_size/2.))
elif source in ["Am"]:
f.write('%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n' %(x[i][j],y[i][j],mostlike2d_2[i][j],lowersigmas_2[i][j],uppersigmas_2[i][j],mostlike2d_3[i][j],lowersigmas_3[i][j],uppersigmas_3[i][j],step_size/2.))
f.close()
# Masked 2D plot: no zeros
mostlike2d_1 = np.ma.masked_equal(mostlike2d_1,0)
fig, ax = plt.subplots(1,1,figsize=(12, 10))
ax.set_xlabel('Pixel X')
ax.set_ylabel('Pixel Y')
myplot = plt.pcolor(x, y, mostlike2d_1, cmap='jet')
cbar = fig.colorbar(myplot)
cbar.ax.tick_params(labelsize=40)
plt.axis([x.min(), x.max(), y.min(), y.max()])
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(40)
fig.savefig("plots/KDEPeaks/%s_%s_map_nz_1.pdf" %(assembly,source))
if source in ["Co","CuInXRF","Am"]:
mostlike2d_2 = np.ma.masked_equal(mostlike2d_2,0)
fig, ax = plt.subplots(1,1,figsize=(12, 10))
ax.set_xlabel('Pixel X')
ax.set_ylabel('Pixel Y')
myplot = plt.pcolor(x, y, mostlike2d_2, cmap='jet')
cbar = fig.colorbar(myplot)
cbar.ax.tick_params(labelsize=40)
plt.axis([x.min(), x.max(), y.min(), y.max()])
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(40)
fig.savefig("plots/KDEPeaks/%s_%s_map_nz_2.pdf" %(assembly,source))
if source in ["Am"]:
mostlike2d_3 = np.ma.masked_equal(mostlike2d_3,0)
fig, ax = plt.subplots(1,1,figsize=(12, 10))
ax.set_xlabel('Pixel X')
ax.set_ylabel('Pixel Y')
myplot = plt.pcolor(x, y, mostlike2d_3, cmap='jet')
cbar = fig.colorbar(myplot)
cbar.ax.tick_params(labelsize=40)
plt.axis([x.min(), x.max(), y.min(), y.max()])
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(40)
fig.savefig("plots/KDEPeaks/%s_%s_map_nz_3.pdf" %(assembly,source))
print "finished", assembly, source
def getLimits(assembly,source):
if assembly == "A06-W0110":
if source == "Fe": limits = [0,400]
if source == "Am": limits = [0,1500]
if source == "Cd": limits = [0,800]
if source == "CuInXRF": limits = [0,1000]
if source == "Co": limits = [0,700]
if source == "CoXRF": limits = [0,400]
if source == "CrXRF": limits = [0,400]
if source == "CuXRF": limits = [0,400]
if source == "FeXRF": limits = [0,400]
if source == "MnXRF": limits = [0,400]
if source == "NiXRF": limits = [0,400]
if source == "TiXRF": limits = [0,200]
if source == "VXRF": limits = [0,400]
if assembly == "B06-W0125":
if source == "Fe": limits = [0,700]
if source == "Am": limits = [0,2800]
if source == "Cd": limits = [0,1700]
if source == "CuInXRF": limits = [0,1700]
if source == "Co": limits = [0,1100]
if assembly == "B07-W0125":
if source == "Fe": limits = [0,500]
if source == "Am": limits = [0,1500]
if source == "Cd": limits = [500,900]
if source == "CuInXRF": limits = [0,1000]
if source == "Co": limits = [0,600]
if assembly == "C04-W0110":
if source == "Fe": limits = [0,500]
if source == "Am": limits = [0,1400]
if source == "Cd": limits = [0,800]
if source == "CuInXRF": limits = [0,700]
if source == "Co": limits = [0,600]
if assembly == "D09-W0126":
if source == "Fe": limits = [0,600]
if source == "Am": limits = [0,1800]
if source == "Cd": limits = [0,1200]
if source == "CuInXRF": limits = [0,1100]
if source == "Co": limits = [0,800]
if assembly == "L04-W0125":
if source == "Fe": limits = [0,500]
if source == "Am": limits = [0,2000]
if source == "Cd": limits = [0,1100]
if source == "CuInXRF": limits = [0,1200]
if source == "Co": limits = [0,700]
return limits
def getCuInXRFMidPoint(assembly):
if assembly == "A06-W0110":
CuInXRFMidPoint = 450
if assembly == "B06-W0125":
CuInXRFMidPoint = 700
if assembly == "B07-W0125":
CuInXRFMidPoint = 500
if assembly == "C04-W0110":
CuInXRFMidPoint = 400
if assembly == "D09-W0126":
CuInXRFMidPoint = 600
if assembly == "L04-W0125":
CuInXRFMidPoint = 550
return CuInXRFMidPoint
limits = getLimits(assembly,source)
CuInXRFMidPoint = getCuInXRFMidPoint(assembly)
findMostLikelyTOT(assembly,source,limits[0],limits[1],CuInXRFMidPoint)