Skip to content

Commit 3d8dad4

Browse files
authored
Merge pull request #91 from JuliaTrustworthyAI/mljflux-update
Mljflux update
2 parents b9e2498 + 4b1b87b commit 3d8dad4

File tree

15 files changed

+1217
-1081
lines changed

15 files changed

+1217
-1081
lines changed

Project.toml

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
name = "ConformalPrediction"
22
uuid = "98bfc277-1877-43dc-819b-a3e38c30242f"
33
authors = ["Patrick Altmeyer"]
4-
version = "0.1.11"
4+
version = "0.1.12"
55

66
[deps]
77
CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597"
@@ -29,7 +29,7 @@ ComputationalResources = "0.3"
2929
Flux = "0.13.16, 0.14"
3030
MLJBase = "0.20, 0.21"
3131
MLJEnsembles = "0.3.3"
32-
MLJFlux = "0.2.10"
32+
MLJFlux = "0.2.10, 0.3"
3333
MLJModelInterface = "1"
3434
MLUtils = "0.4.2"
3535
NaturalSort = "1"

README.md

+16-16
Original file line numberDiff line numberDiff line change
@@ -8,9 +8,9 @@
88

99
## 🏃 Quick Tour
1010

11-
> First time here? Take a quick interactive [tour](https://binder.plutojl.org/v0.19.12/open?url=https%253A%252F%252Fraw.githubusercontent.com%252Fpat-alt%252FConformalPrediction.jl%252Fmain%252Fdocs%252Fpluto%252Fintro.jl) to see what this package can do: [![Binder](https://mybinder.org/badge_logo.svg)](https://binder.plutojl.org/v0.19.12/open?url=https%253A%252F%252Fraw.githubusercontent.com%252Fpat-alt%252FConformalPrediction.jl%252Fmain%252Fdocs%252Fpluto%252Fintro.jl)
11+
> First time here? Take a quick interactive [tour](https://juliahub.com/ui/Notebooks/juliahub/Tutorials/ConformalPrediction.jl) to see what this package can do right on [JuliaHub](https://juliahub.com/ui/Notebooks/juliahub/Tutorials/ConformalPrediction.jl) (To run the notebook, hit login and then edit).
1212
13-
The button takes you to a [`Pluto.jl`](https://github.com/fonsp/Pluto.jl) 🎈 notebook hosted on [binder](https://mybinder.org/). In my own experience, this may take some time to load, certainly long enough to get yourself a hot beverage ☕. Alternatively, you can run the notebook locally or skip the tour for now and read on below.
13+
This [`Pluto.jl`](https://github.com/fonsp/Pluto.jl) 🎈 notebook won the 2nd Price in the [JuliaCon 2023 Notebook Competition](https://info.juliahub.com/pluto-notebook-winner-23).
1414

1515
### Local Tour
1616

@@ -111,11 +111,11 @@ ŷ[1:show_first]
111111
```
112112

113113
5-element Vector{Tuple{Float64, Float64}}:
114-
(0.0458889297242715, 1.9182762960257687)
115-
(-1.9174452847238976, -0.04505791842240037)
116-
(-1.2544275358451678, 0.6179598304563294)
117-
(-0.2818835218505735, 1.5905038444509236)
118-
(0.01299565032151917, 1.8853830166230163)
114+
(-0.04087262272113379, 1.8635644669554758)
115+
(0.04647464096907805, 1.9509117306456876)
116+
(-0.24248802236397216, 1.6619490673126376)
117+
(-0.07841928163933476, 1.8260178080372749)
118+
(-0.02268628324126465, 1.881750806435345)
119119

120120
For simple models like this one, we can call a custom `Plots` recipe on our instance, fit result and data to generate the chart below:
121121

@@ -139,20 +139,20 @@ println("SSC: $(round(_eval.measurement[2], digits=3))")
139139
```
140140

141141
PerformanceEvaluation object with these fields:
142-
measure, operation, measurement, per_fold,
142+
model, measure, operation, measurement, per_fold,
143143
per_observation, fitted_params_per_fold,
144-
report_per_fold, train_test_rows
144+
report_per_fold, train_test_rows, resampling, repeats
145145
Extract:
146146
┌──────────────────────────────────────────────┬───────────┬─────────────┬──────
147147
│ measure │ operation │ measurement │ 1.9 ⋯
148148
├──────────────────────────────────────────────┼───────────┼─────────────┼──────
149-
│ ConformalPrediction.emp_coverage │ predict │ 0.948 │ 0.0 ⋯
150-
│ ConformalPrediction.size_stratified_coverage │ predict │ 0.948 │ 0.0 ⋯
149+
│ ConformalPrediction.emp_coverage │ predict │ 0.953 │ 0.0 ⋯
150+
│ ConformalPrediction.size_stratified_coverage │ predict │ 0.953 │ 0.0 ⋯
151151
└──────────────────────────────────────────────┴───────────┴─────────────┴──────
152152
2 columns omitted
153153

154-
Empirical coverage: 0.948
155-
SSC: 0.948
154+
Empirical coverage: 0.953
155+
SSC: 0.953
156156

157157
## 📚 Read on
158158

@@ -240,14 +240,14 @@ Contributions are welcome! A good place to start is the [list](https://github.co
240240

241241
## 🙏 Thanks
242242

243-
To build this package I have read and re-read both Angelopoulos and Bates (2021) and Barber et al. (2021). The Awesome Conformal Prediction [repository](https://github.com/valeman/awesome-conformal-prediction) (Manokhin, n.d.) has also been a fantastic place to get started. Thanks also to [@aangelopoulos](https://github.com/aangelopoulos), [@valeman](https://github.com/valeman) and others for actively contributing to discussions on here. Quite a few people have also recently started using and contributing to the package for which I am very grateful. Finally, many thanks to Anthony Blaom ([@ablaom](https://github.com/ablaom)) for many helpful discussions about how to interface this package to `MLJ.jl`.
243+
To build this package I have read and re-read both Angelopoulos and Bates (2021) and Barber et al. (2021). The Awesome Conformal Prediction [repository](https://github.com/valeman/awesome-conformal-prediction) (Manokhin 2022) has also been a fantastic place to get started. Thanks also to [@aangelopoulos](https://github.com/aangelopoulos), [@valeman](https://github.com/valeman) and others for actively contributing to discussions on here. Quite a few people have also recently started using and contributing to the package for which I am very grateful. Finally, many thanks to Anthony Blaom ([@ablaom](https://github.com/ablaom)) for many helpful discussions about how to interface this package to `MLJ.jl`.
244244

245245
## 🎓 References
246246

247-
Angelopoulos, Anastasios N., and Stephen Bates. 2021. “A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification.” <https://arxiv.org/abs/2107.07511>.
247+
Angelopoulos, Anastasios N, and Stephen Bates. 2021. “A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification.” *arXiv Preprint arXiv:2107.07511*.
248248

249249
Barber, Rina Foygel, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. 2021. “Predictive Inference with the Jackknife+.” *The Annals of Statistics* 49 (1): 486–507. <https://doi.org/10.1214/20-AOS1965>.
250250

251251
Blaom, Anthony D., Franz Kiraly, Thibaut Lienart, Yiannis Simillides, Diego Arenas, and Sebastian J. Vollmer. 2020. “MLJ: A Julia Package for Composable Machine Learning.” *Journal of Open Source Software* 5 (55): 2704. <https://doi.org/10.21105/joss.02704>.
252252

253-
Manokhin, Valery. n.d. “Awesome Conformal Prediction.”
253+
Manokhin, Valery. 2022. “Awesome Conformal Prediction.” Zenodo. <https://doi.org/10.5281/zenodo.6467205>.

README_files/figure-commonmark/cell-12-output-1.svg

+34-34
Loading

0 commit comments

Comments
 (0)