@@ -8,13 +8,13 @@ function derivative(f::Function, ftype::Symbol, dtype::Symbol)
8
8
end
9
9
return g
10
10
end
11
- Compat. @compat derivative {T <: Number} (f:: Function , x:: Union{T, Vector {T}} , dtype:: Symbol = :central ) = finite_difference (f, float (x), dtype)
11
+ Compat. @compat derivative {T <: Number} (f:: Function , x:: Union{T, AbstractVector {T}} , dtype:: Symbol = :central ) = finite_difference (f, float (x), dtype)
12
12
derivative (f:: Function , dtype:: Symbol = :central ) = derivative (f, :scalar , dtype)
13
13
14
- Compat. @compat gradient {T <: Number} (f:: Function , x:: Union{T, Vector {T}} , dtype:: Symbol = :central ) = finite_difference (f, float (x), dtype)
14
+ Compat. @compat gradient {T <: Number} (f:: Function , x:: Union{T, AbstractVector {T}} , dtype:: Symbol = :central ) = finite_difference (f, float (x), dtype)
15
15
gradient (f:: Function , dtype:: Symbol = :central ) = derivative (f, :vector , dtype)
16
16
17
- Compat. @compat function Base. gradient {T <: Number} (f:: Function , x:: Union{T, Vector {T}} , dtype:: Symbol = :central )
17
+ Compat. @compat function Base. gradient {T <: Number} (f:: Function , x:: Union{T, AbstractVector {T}} , dtype:: Symbol = :central )
18
18
Base. warn_once (" The finite difference methods from Calculus.jl no longer extend Base.gradient and should be called as Calculus.gradient instead. This usage is deprecated." )
19
19
Calculus. gradient (f,x,dtype)
20
20
end
26
26
27
27
ctranspose (f:: Function ) = derivative (f)
28
28
29
- function jacobian {T <: Number} (f:: Function , x:: Vector {T} , dtype:: Symbol )
29
+ function jacobian {T <: Number} (f:: Function , x:: AbstractVector {T} , dtype:: Symbol )
30
30
finite_difference_jacobian (f, x, dtype)
31
31
end
32
32
function jacobian (f:: Function , dtype:: Symbol )
33
- g (x:: Vector ) = finite_difference_jacobian (f, x, dtype)
33
+ g (x:: AbstractVector ) = finite_difference_jacobian (f, x, dtype)
34
34
return g
35
35
end
36
36
jacobian (f:: Function ) = jacobian (f, :central )
@@ -45,16 +45,16 @@ function second_derivative(f::Function, g::Function, ftype::Symbol, dtype::Symbo
45
45
end
46
46
return h
47
47
end
48
- Compat. @compat function second_derivative {T <: Number} (f:: Function , g:: Function , x:: Union{T, Vector {T}} , dtype:: Symbol )
48
+ Compat. @compat function second_derivative {T <: Number} (f:: Function , g:: Function , x:: Union{T, AbstractVector {T}} , dtype:: Symbol )
49
49
finite_difference_hessian (f, g, x, dtype)
50
50
end
51
- Compat. @compat function hessian {T <: Number} (f:: Function , g:: Function , x:: Union{T, Vector {T}} , dtype:: Symbol )
51
+ Compat. @compat function hessian {T <: Number} (f:: Function , g:: Function , x:: Union{T, AbstractVector {T}} , dtype:: Symbol )
52
52
finite_difference_hessian (f, g, x, dtype)
53
53
end
54
- Compat. @compat function second_derivative {T <: Number} (f:: Function , g:: Function , x:: Union{T, Vector {T}} )
54
+ Compat. @compat function second_derivative {T <: Number} (f:: Function , g:: Function , x:: Union{T, AbstractVector {T}} )
55
55
finite_difference_hessian (f, g, x, :central )
56
56
end
57
- Compat. @compat function hessian {T <: Number} (f:: Function , g:: Function , x:: Union{T, Vector {T}} )
57
+ Compat. @compat function hessian {T <: Number} (f:: Function , g:: Function , x:: Union{T, AbstractVector {T}} )
58
58
finite_difference_hessian (f, g, x, :central )
59
59
end
60
60
function second_derivative (f:: Function , x:: Number , dtype:: Symbol )
63
63
function hessian (f:: Function , x:: Number , dtype:: Symbol )
64
64
finite_difference_hessian (f, derivative (f), x, dtype)
65
65
end
66
- function second_derivative {T <: Number} (f:: Function , x:: Vector {T} , dtype:: Symbol )
66
+ function second_derivative {T <: Number} (f:: Function , x:: AbstractVector {T} , dtype:: Symbol )
67
67
finite_difference_hessian (f, gradient (f), x, dtype)
68
68
end
69
- function hessian {T <: Number} (f:: Function , x:: Vector {T} , dtype:: Symbol )
69
+ function hessian {T <: Number} (f:: Function , x:: AbstractVector {T} , dtype:: Symbol )
70
70
finite_difference_hessian (f, gradient (f), x, dtype)
71
71
end
72
72
function second_derivative (f:: Function , x:: Number )
75
75
function hessian (f:: Function , x:: Number )
76
76
finite_difference_hessian (f, derivative (f), x, :central )
77
77
end
78
- function second_derivative {T <: Number} (f:: Function , x:: Vector {T} )
78
+ function second_derivative {T <: Number} (f:: Function , x:: AbstractVector {T} )
79
79
finite_difference_hessian (f, gradient (f), x, :central )
80
80
end
81
- function hessian {T <: Number} (f:: Function , x:: Vector {T} )
81
+ function hessian {T <: Number} (f:: Function , x:: AbstractVector {T} )
82
82
finite_difference_hessian (f, gradient (f), x, :central )
83
83
end
84
84
second_derivative (f:: Function , g:: Function , dtype:: Symbol ) = second_derivative (f, g, :scalar , dtype)
0 commit comments