-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathGradientTest.jl
241 lines (189 loc) · 7.78 KB
/
GradientTest.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
module GradientTest
import Calculus
using Test
using LinearAlgebra
using ForwardDiff
using ForwardDiff: Dual, Tag
using StaticArrays
using DiffTests
using JLArrays
JLArrays.allowscalar(false)
include(joinpath(dirname(@__FILE__), "utils.jl"))
##################
# hardcoded test #
##################
f = DiffTests.rosenbrock_1
x = [0.1, 0.2, 0.3]
v = f(x)
g = [-9.4, 15.6, 52.0]
@testset "Rosenbrock, chunk size = $c and tag = $(repr(tag))" for c in (1, 2, 3), tag in (nothing, Tag(f, eltype(x)))
println(" ...running hardcoded test with chunk size = $c and tag = $(repr(tag))")
cfg = ForwardDiff.GradientConfig(f, x, ForwardDiff.Chunk{c}(), tag)
@test eltype(cfg) == Dual{typeof(tag), eltype(x), c}
@test isapprox(g, ForwardDiff.gradient(f, x, cfg))
@test isapprox(g, ForwardDiff.gradient(f, x))
out = similar(x)
ForwardDiff.gradient!(out, f, x, cfg)
@test isapprox(out, g)
out = similar(x)
ForwardDiff.gradient!(out, f, x)
@test isapprox(out, g)
out = DiffResults.GradientResult(x)
ForwardDiff.gradient!(out, f, x, cfg)
@test isapprox(DiffResults.value(out), v)
@test isapprox(DiffResults.gradient(out), g)
out = DiffResults.GradientResult(x)
ForwardDiff.gradient!(out, f, x)
@test isapprox(DiffResults.value(out), v)
end
cfgx = ForwardDiff.GradientConfig(sin, x)
@test_throws ForwardDiff.InvalidTagException ForwardDiff.gradient(f, x, cfgx)
@test ForwardDiff.gradient(f, x, cfgx, Val{false}()) == ForwardDiff.gradient(f,x)
########################
# test vs. Calculus.jl #
########################
@testset "$f" for f in DiffTests.VECTOR_TO_NUMBER_FUNCS
v = f(X)
g = ForwardDiff.gradient(f, X)
@test isapprox(g, Calculus.gradient(f, X), atol=FINITEDIFF_ERROR)
for c in CHUNK_SIZES, tag in (nothing, Tag(f, eltype(x)))
println(" ...testing $f with chunk size = $c and tag = $(repr(tag))")
cfg = ForwardDiff.GradientConfig(f, X, ForwardDiff.Chunk{c}(), tag)
out = ForwardDiff.gradient(f, X, cfg)
@test isapprox(out, g)
out = similar(X)
ForwardDiff.gradient!(out, f, X, cfg)
@test isapprox(out, g)
out = DiffResults.GradientResult(X)
ForwardDiff.gradient!(out, f, X, cfg)
@test isapprox(DiffResults.value(out), v)
@test isapprox(DiffResults.gradient(out), g)
end
end
##########################################
# test specialized StaticArray codepaths #
##########################################
println(" ...testing specialized StaticArray codepaths")
@testset "$T" for T in (StaticArrays.SArray, StaticArrays.MArray)
x = rand(3, 3)
sx = T{Tuple{3,3}}(x)
cfg = ForwardDiff.GradientConfig(nothing, x)
scfg = ForwardDiff.GradientConfig(nothing, sx)
actual = ForwardDiff.gradient(prod, x)
@test ForwardDiff.gradient(prod, sx) == actual
@test ForwardDiff.gradient(prod, sx, cfg) == actual
@test ForwardDiff.gradient(prod, sx, scfg) == actual
@test ForwardDiff.gradient(prod, sx, scfg) isa StaticArray
@test ForwardDiff.gradient(prod, sx, scfg, Val{false}()) == actual
@test ForwardDiff.gradient(prod, sx, scfg, Val{false}()) isa StaticArray
out = similar(x)
ForwardDiff.gradient!(out, prod, sx)
@test out == actual
out = similar(x)
ForwardDiff.gradient!(out, prod, sx, cfg)
@test out == actual
out = similar(x)
ForwardDiff.gradient!(out, prod, sx, scfg)
@test out == actual
result = DiffResults.GradientResult(x)
result = ForwardDiff.gradient!(result, prod, x)
result1 = DiffResults.GradientResult(x)
result2 = DiffResults.GradientResult(x)
result3 = DiffResults.GradientResult(x)
result1 = ForwardDiff.gradient!(result1, prod, sx)
result2 = ForwardDiff.gradient!(result2, prod, sx, cfg)
result3 = ForwardDiff.gradient!(result3, prod, sx, scfg)
@test DiffResults.value(result1) == DiffResults.value(result)
@test DiffResults.value(result2) == DiffResults.value(result)
@test DiffResults.value(result3) == DiffResults.value(result)
@test DiffResults.gradient(result1) == DiffResults.gradient(result)
@test DiffResults.gradient(result2) == DiffResults.gradient(result)
@test DiffResults.gradient(result3) == DiffResults.gradient(result)
sresult1 = DiffResults.GradientResult(sx)
sresult2 = DiffResults.GradientResult(sx)
sresult3 = DiffResults.GradientResult(sx)
sresult1 = ForwardDiff.gradient!(sresult1, prod, sx)
sresult2 = ForwardDiff.gradient!(sresult2, prod, sx, cfg)
sresult3 = ForwardDiff.gradient!(sresult3, prod, sx, scfg)
@test DiffResults.value(sresult1) == DiffResults.value(result)
@test DiffResults.value(sresult2) == DiffResults.value(result)
@test DiffResults.value(sresult3) == DiffResults.value(result)
@test DiffResults.gradient(sresult1) == DiffResults.gradient(result)
@test DiffResults.gradient(sresult2) == DiffResults.gradient(result)
@test DiffResults.gradient(sresult3) == DiffResults.gradient(result)
end
@testset "exponential function at base zero" begin
@test isequal(ForwardDiff.gradient(t -> t[1]^t[2], [0.0, -0.5]), [NaN, NaN])
@test isequal(ForwardDiff.gradient(t -> t[1]^t[2], [0.0, 0.0]), [NaN, NaN])
@test isequal(ForwardDiff.gradient(t -> t[1]^t[2], [0.0, 0.5]), [Inf, NaN])
@test isequal(ForwardDiff.gradient(t -> t[1]^t[2], [0.0, 1.5]), [0.0, 0.0])
end
##############################################
# test GPUArray compatibility (via JLArrays) #
##############################################
println(" ...testing GPUArray compatibility (via JLArrays)")
@testset "size = $(size(x))" for x in JLArray.([
rand(1),
rand(DEFAULT_CHUNK_THRESHOLD+1),
rand(1,1),
rand(DEFAULT_CHUNK_THRESHOLD+1,DEFAULT_CHUNK_THRESHOLD+1),
rand(1,1,1)
])
@test ForwardDiff.gradient(prod, x) isa typeof(x)
end
#############
# bug fixes #
#############
# Issue 399
@testset "chunk size zero" begin
f_const(x) = 1.0
g_grad_const = x -> ForwardDiff.gradient(f_const, x)
@test g_grad_const([1.0]) == [0.0]
@test isempty(g_grad_const(zeros(Float64, 0)))
end
@testset "dimension errors for gradient" begin
@test_throws DimensionMismatch ForwardDiff.gradient(identity, 2pi) # input
@test_throws DimensionMismatch ForwardDiff.gradient(identity, fill(2pi, 2)) # vector_mode_gradient
@test_throws DimensionMismatch ForwardDiff.gradient(identity, fill(2pi, 10^6)) # chunk_mode_gradient
end
# Issue 548
@testset "ArithmeticStyle" begin
function f(p)
sum(collect(0.0:p[1]:p[2]))
end
@test ForwardDiff.gradient(f, [0.2,25.0]) == [7875.0, 0.0]
end
@testset "det with branches" begin
# Issue 197
det2(A) = return (
A[1,1]*(A[2,2]*A[3,3]-A[2,3]*A[3,2]) -
A[1,2]*(A[2,1]*A[3,3]-A[2,3]*A[3,1]) +
A[1,3]*(A[2,1]*A[3,2]-A[2,2]*A[3,1])
)
A = [1 0 0; 0 2 0; 0 pi 3]
@test det2(A) == det(A) == 6
@test istril(A)
∇A = [6 0 0; 0 3 -pi; 0 0 2]
@test ForwardDiff.gradient(det2, A) ≈ ∇A
@test ForwardDiff.gradient(det, A) ≈ ∇A
# And issue 407
@test ForwardDiff.hessian(det, A) ≈ ForwardDiff.hessian(det2, A)
# https://discourse.julialang.org/t/forwarddiff-and-zygote-return-wrong-jacobian-for-log-det-l/77961
S = [1.0 0.8; 0.8 1.0]
L = cholesky(S).L
@test ForwardDiff.gradient(L -> log(det(L)), Matrix(L)) ≈ [1.0 -1.3333333333333337; 0.0 1.666666666666667]
@test ForwardDiff.gradient(L -> logdet(L), Matrix(L)) ≈ [1.0 -1.3333333333333337; 0.0 1.666666666666667]
end
@testset "branches in mul!" begin
a, b = rand(3,3), rand(3,3)
# Issue 536, version with 3-arg *, Julia 1.7:
@test ForwardDiff.derivative(x -> sum(x*a*b), 0.0) ≈ sum(a * b)
# version with just mul!
dx = ForwardDiff.derivative(0.0) do x
c = similar(a, typeof(x))
mul!(c, a, b, x, false)
sum(c)
end
@test dx ≈ sum(a * b)
end
end # module