forked from NU-CUCIS/ElemNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl_regressors_torch.py
executable file
·371 lines (313 loc) · 15.8 KB
/
dl_regressors_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
"""
Train a neural network on the given dataset with given configuration
"""
import argparse
import math
import re
import sys
import traceback
import numpy as np
import time
from data_utils import *
from sklearn import preprocessing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from train_utils import *
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
parser = argparse.ArgumentParser(description='run ml regressors on dataset',argument_default=argparse.SUPPRESS)
parser.add_argument('--train_data_path', help='path to the training dataset',default=None, type=str, required=False)
parser.add_argument('--test_data_path', help='path to the test dataset', default=None, type=str,required=False)
parser.add_argument('--label', help='output variable', default=None, type=str,required=False)
parser.add_argument('--input', help='input attributes set', default=None, type=str, required=False)
parser.add_argument('--config_file', help='configuration file path', default=None, type=str, required=False)
parser.add_argument('--test_metric', help='test_metric to use', default=None, type=str, required=False)
parser.add_argument('--use_cpu', action='store_true', help='disable gpu usage', required=False)
parser.add_argument('--priority', help='priority of this job', default=0, type=int, required=False)
args,_ = parser.parse_known_args()
# hyper_params = {'batch_size':32, 'num_epochs':4000, 'EVAL_FREQUENCY':1000, 'learning_rate':1e-4, 'momentum':0.9, 'lr_drop_rate':0.5, 'epoch_step':500, 'nesterov':True, 'reg_W':0., 'optimizer':'Adam', 'reg_type':'L2', 'activation':'relu', 'patience':100}
hyper_params = {'batch_size':32, 'num_epochs':4, 'EVAL_FREQUENCY':1000, 'SAVE_FREQUENCY':1, 'learning_rate':1e-4, 'momentum':0.9, 'lr_drop_rate':0.5, 'epoch_step':500, 'nesterov':True, 'reg_W':0., 'optimizer':'Adam', 'reg_type':'L2', 'activation':'relu', 'patience':100}
# NN architecture
SEED = 66478
#"architecture": "1024x4D-512x3D-256x3D-128x3D-64x2-32x1-1
class ResNet(torch.nn.Module):
def __init__(self, main_module, side_module=None):
super().__init__()
self.main_module = main_module
self.side_module = side_module
def forward(self, inputs):
if not self.side_module:
return self.main_module(inputs) + inputs
else:
return self.main_module(inputs) + self.side_module(inputs)
class DropoutBlock(torch.nn.Module):
def __init__(self, module, dropout_ratio):
super(DropoutBlock, self).__init__()
self.module = module
self.dropout = nn.Dropout(p=dropout_ratio)
def forward(self, inputs):
x = self.module(inputs)
x = self.dropout(x)
return x
class CustomDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = {
'data': torch.tensor(self.data[idx], dtype=torch.float32),
'label': torch.tensor(self.labels[idx], dtype=torch.long)
}
return sample
class ModelSlim(torch.nn.Module):
def __init__(self, architecture, input_size, num_labels=1, activation='relu', dropouts=[]):
super(ModelSlim, self).__init__()
archs = architecture.strip().split('-')
self.arch_layers = []
prev_num_outputs = input_size
prev_block_num_outputs = input_size
for i in range(len(archs)):
block_layer = []
arch = archs[i]
if 'x' in arch:
arch = arch.split('x')
num_outputs = int(re.findall(r'\d+',arch[0])[0])
layers = int(re.findall(r'\d+',arch[1])[0])
j = 0
aux_layers = re.findall(r'[A-Z]',arch[0])
for l in range(layers):
crt_layer = []
if aux_layers and aux_layers[0] == 'B':
if len(aux_layers)>1 and aux_layers[1]=='A':
print('adding fully connected layers with %d outputs followed by batch_norm and act' % num_outputs)
crt_layer.append(nn.Linear(prev_num_outputs, num_outputs))
crt_layer.append(nn.BatchNorm1d(num_outputs, affine=True))
crt_layer.append(nn.ReLU())
else:
print('adding fully connected layers with %d outputs followed by batch_norm' % num_outputs)
crt_layer.append(nn.Linear(prev_num_outputs, num_outputs))
crt_layer.append(nn.BatchNorm1d(num_outputs, affine=True))
else:
print('adding fully connected layers with %d outputs' % num_outputs)
crt_layer.append(nn.Linear(prev_num_outputs, num_outputs))
if 'R' in aux_layers:
if prev_num_outputs and prev_num_outputs==num_outputs:
print('adding residual, both sizes are same')
crt_layer = [ResNet(nn.Sequential(*crt_layer))]
else:
crt_layer = [ResNet(nn.Sequential(*crt_layer), nn.Linear(prev_num_outputs, num_outputs))]
print('adding residual with fc as the size are different')
prev_num_outputs = num_outputs
block_layer = block_layer + crt_layer
aux_layers_sub = re.findall(r'[A-Z]', arch[1])
if 'R' in aux_layers_sub:
if prev_block_num_outputs and prev_block_num_outputs == num_outputs:
print('adding residual to stub, both sizes are same')
block_layer = [ResNet(nn.Sequential(*block_layer))]
else:
print('adding residual to stub with fc as the size are different')
block_layer = [ResNet(nn.Sequential(*block_layer), nn.Linear(prev_block_num_outputs, num_outputs))]
if 'D' in aux_layers_sub and num_labels == 1 and len(dropouts) > i:
print('adding dropout', dropouts[i])
block_layer = [DropoutBlock(nn.Sequential(*block_layer), dropout_ratio=dropouts[i])]
prev_block_num_outputs = num_outputs
else:
# final layer
print('adding final layer with ' + str(num_labels) + ' output')
block_layer = [nn.Linear(prev_block_num_outputs, num_labels)]
if 'R' in arch:
print('using ReLU at last layer')
block_layer.append(nn.ReLU())
self.arch_layers += block_layer
self.model = nn.Sequential(*self.arch_layers)
def forward(self, x):
return self.model(x)
def numpy_to_tensor(lst):
"""
Convert numpy array to torch tensor
"""
if type(lst) == np.ndarray:
return torch.tensor(lst).to(dtype=torch.float32)
else:
out = [torch.tensor(item).to(dtype=torch.float32) for item in lst]
return tuple(out)
# def error_rate(predictions, labels, step=0, dataset_partition=''):
# return np.mean(np.absolute(predictions - labels))
# def error_rate_classification(predictions, labels, step=0, dataset_partition=''):
# return 100.0 - (100.0 * np.sum(np.argmax(predictions, 1) == labels) / predictions.shape[0])
def print_model(model):
"""
A simple functon that prints out a PyTorch model's structural details
"""
# Print the number of parameters in the model
parameter_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("In total, this network has ", parameter_count, " parameters")
def eval_in_batches(model, dataloader, device, criterion=nn.L1Loss()):
model.eval()
predictions = []
with torch.no_grad():
for batch in dataloader:
data, target = batch['data'], batch['label']
if device.type == 'cuda':
data, target = data.cuda(), target.cuda()
output = model(data)
predictions.append(output.cpu().numpy())
return np.concatenate(predictions, axis=0)
def run_regressors(train_X, train_y, valid_X, valid_y, test_X, test_y, logger=None, config=None):
assert config is not None
hyper_params.update(config['paramsGrid'])
assert logger is not None
rr = logger
device = torch.device('cuda') if not hasattr(args, 'use_cpu') and torch.cuda.is_available() else torch.device('cpu')
# tf.compat.v1.reset_default_graph()
train_X = train_X.reshape(train_X.shape[0], -1).astype("float32")
valid_X = valid_X.reshape(valid_X.shape[0], -1).astype("float32")
test_X = test_X.reshape(test_X.shape[0], -1).astype("float32")
num_input = train_X.shape[1]
batch_size = hyper_params['batch_size']
learning_rate = hyper_params['learning_rate']
optimizer = hyper_params['optimizer']
architecture = config['architecture']
num_epochs = hyper_params['num_epochs']
model_path = config['model_path']
patience = hyper_params['patience']
save_path = config['save_path']
loss_type = config['loss_type']
if 'dropouts' in hyper_params:
dropouts = hyper_params['dropouts']
else:
dropouts = []
test_metric = mean_squared_error
if config['test_metric']=='mae':
test_metric = mean_absolute_error
use_valid = config['use_valid']
EVAL_FREQUENCY = hyper_params['EVAL_FREQUENCY']
SAVE_FREQUENCY = hyper_params['SAVE_FREQUENCY']
train_y = train_y.reshape(train_y.shape[0]).astype("float32")
valid_y = valid_y.reshape(valid_y.shape[0]).astype("float32")
test_y = test_y.reshape(test_y.shape[0]).astype("float32")
train_data = train_X
train_labels = train_y
test_data = test_X
test_labels = test_y
validation_data = valid_X
validation_labels = valid_y
train_set = CustomDataset(train_data, train_labels)
train_dataloader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
valid_set = CustomDataset(validation_data, validation_labels)
valid_dataloader = DataLoader(valid_set, batch_size=batch_size, shuffle=False)
test_set = CustomDataset(test_data, test_labels)
test_dataloader = DataLoader(test_set, batch_size=batch_size, shuffle=False)
rr.fprint("train matrix shape of train_X: ",train_X.shape, ' train_y: ', train_y.shape)
rr.fprint("valid matrix shape of train_X: ",valid_X.shape, ' valid_y: ', valid_y.shape)
rr.fprint("test matrix shape of valid_X: ",test_X.shape, ' test_y: ', test_y.shape)
rr.fprint('architecture is: ',architecture)
rr.fprint('learning rate is ',learning_rate)
# train_data_node = tf.placeholder(tf.float32, shape=(batch_size, num_input))
##train_data_node = tf.compat.v1.placeholder(tf.float32, shape=(batch_size, num_input))
# eval_data = tf.placeholder(tf.float32, shape=(batch_size, num_input))
# logits,_ = model_slim(train_data_node, architecture, dropouts=dropouts)
input_size = train_X.shape[1]
model = ModelSlim(architecture, input_size, dropouts=dropouts).to(device)
print(model)
assert loss_type == 'mae'
if loss_type == 'mae':
loss_function = nn.L1Loss() # * (180 / math.pi)
# batch = tf.Variable(0)
assert optimizer=='Adam'
if optimizer=='Adam':
# optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=batch)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# eval_prediction,_ = model_slim(eval_data, architecture,train=False, dropouts=dropouts)
start_time = time.time()
print('num_epochs is ', num_epochs)
# sess = tf.Session()
# sess.run(tf.initialize_all_variables())
rr.fprint('Initialized')
# train_writer = tf.summary.FileWriter('summary', graph_def=sess.graph_def)
train_size = train_X.shape[0]
best_val_error = 100
patience_steps = int(patience * train_size/batch_size)
best_step = 0
start_epoch = 0
model_save_path = os.path.join(model_path, f"model_{architecture}.pt")
if model_path and os.path.exists(model_save_path):
rr.fprint('Restoring model from %s' % model_save_path)
checkpoint = torch.load(model_save_path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch'] + 1
rr.fprint('start training')
step=0
for epoch in range(start_epoch, num_epochs):
running_loss = 0.0
for batch_idx, batch in enumerate(train_dataloader):
model.train()
data, target = batch['data'], batch['label']
if device.type == 'cuda':
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
target = target.unsqueeze(1)
loss = loss_function(output, target)
loss.backward()
optimizer.step()
train_loss = loss.item()
running_loss += train_loss
if (step + 1) % EVAL_FREQUENCY == 0:
elapsed_time = time.time() - start_time
if use_valid:
val_predictions = eval_in_batches(model, valid_dataloader, device)
val_error = test_metric(val_predictions, validation_labels)
test_predictions = eval_in_batches(model, test_dataloader, device)
test_error = test_metric(test_predictions, test_labels)
if not use_valid:
val_error = test_error
if best_val_error > val_error:
best_val_error = val_error
best_step = step
rr.fprint(
'Step %d (epoch %.2d), %.1f s minibatch loss: %.5f, validation error: %.5f, test error: %.5f, best validation error: %.5f' % (
step, int(step * batch_size) / train_size,
elapsed_time, train_loss, val_error, test_error, best_val_error))
if best_step + patience_steps <= step:
rr.fprint('No improvement observed in last %d steps, best error in validation set is %f'%(patience_steps, best_val_error))
return best_val_error
step += 1
sys.stdout.flush()
start_time = time.time()
if (epoch + 1) % SAVE_FREQUENCY == 0:
checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(checkpoint, model_save_path)
print(f'Checkpoint saved at epoch {epoch+1}')
return best_val_error
if __name__=='__main__':
args = parser.parse_args()
config = {}
config['train_data_path'] = args.train_data_path
config['test_data_path'] = args.test_data_path
config['label'] = args.label
config['input_type'] = args.input
config['log_folder'] = 'logs_dl'
config['log_file'] = 'dl_log_' + get_date_str() + '.log'
config['test_metric'] = args.test_metric
config['architecture'] = 'infile'
if args.config_file:
config.update(load_config(args.config_file))
if not os.path.exists(config['log_folder']):
createDir(config['log_folder'])
logger = Record_Results(os.path.join(config['log_folder'], config['log_file']))
logger.fprint('job config: ' + str(config))
train_X, train_y, valid_X, valid_y, test_X, test_y = load_csv(config['train_data_path'],
test_data_path=config['test_data_path'],
input_types=config['input_types'],
label=config['label'], logger=logger)
run_regressors(train_X, train_y, valid_X, valid_y, test_X, test_y, logger=logger, config=config)
logger.fprint('done')