-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathSC_Depth.py
114 lines (88 loc) · 4.34 KB
/
SC_Depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import torch
from pytorch_lightning import LightningModule
import losses.loss_functions as LossF
from models.DepthNet import DepthNet
from models.PoseNet import PoseNet
from visualization import *
class SC_Depth(LightningModule):
def __init__(self, hparams):
super(SC_Depth, self).__init__()
self.save_hyperparameters()
# model
self.depth_net = DepthNet(self.hparams.hparams.resnet_layers)
self.pose_net = PoseNet()
def configure_optimizers(self):
optim_params = [
{'params': self.depth_net.parameters(), 'lr': self.hparams.hparams.lr},
{'params': self.pose_net.parameters(), 'lr': self.hparams.hparams.lr}
]
optimizer = torch.optim.Adam(optim_params)
return [optimizer]
def training_step(self, batch, batch_idx):
tgt_img, ref_imgs, intrinsics = batch
# network forward
tgt_depth = self.depth_net(tgt_img)
ref_depths = [self.depth_net(im) for im in ref_imgs]
poses = [self.pose_net(tgt_img, im) for im in ref_imgs]
poses_inv = [self.pose_net(im, tgt_img) for im in ref_imgs]
# compute loss
w1 = self.hparams.hparams.photo_weight
w2 = self.hparams.hparams.geometry_weight
w3 = self.hparams.hparams.smooth_weight
loss_1, loss_2 = LossF.photo_and_geometry_loss(tgt_img, ref_imgs, tgt_depth, ref_depths,
intrinsics, poses, poses_inv, self.hparams.hparams)
loss_3 = LossF.compute_smooth_loss(tgt_depth, tgt_img)
loss = w1*loss_1 + w2*loss_2 + w3*loss_3
# create logs
self.log('train/total_loss', loss)
self.log('train/photo_loss', loss_1)
self.log('train/geometry_loss', loss_2)
self.log('train/smooth_loss', loss_3)
return loss
def validation_step(self, batch, batch_idx):
if self.hparams.hparams.val_mode == 'depth':
tgt_img, gt_depth = batch
tgt_depth = self.depth_net(tgt_img)
errs = LossF.compute_errors(gt_depth, tgt_depth,
self.hparams.hparams.dataset_name)
errs = {'abs_diff': errs[0], 'abs_rel': errs[1],
'a1': errs[6], 'a2': errs[7], 'a3': errs[8]}
elif self.hparams.hparams.val_mode == 'photo':
tgt_img, ref_imgs, intrinsics = batch
tgt_depth = self.depth_net(tgt_img)
ref_depths = [self.depth_net(im) for im in ref_imgs]
poses = [self.pose_net(tgt_img, im) for im in ref_imgs]
poses_inv = [self.pose_net(im, tgt_img) for im in ref_imgs]
loss_1, loss_2 = LossF.photo_and_geometry_loss(tgt_img, ref_imgs, tgt_depth, ref_depths,
intrinsics, poses, poses_inv, self.hparams.hparams)
errs = {'photo_loss': loss_1.item()}
else:
print('wrong validation mode')
if self.global_step < 10:
return errs
# plot
if batch_idx < 3:
vis_img = visualize_image(tgt_img[0]) # (3, H, W)
vis_depth = visualize_depth(tgt_depth[0, 0]) # (3, H, W)
stack = torch.cat([vis_img, vis_depth], dim=1).unsqueeze(
0) # (1, 3, 2*H, W)
self.logger.experiment.add_images(
'val/img_depth_{}'.format(batch_idx), stack, self.current_epoch)
return errs
def validation_epoch_end(self, outputs):
if self.hparams.hparams.val_mode == 'depth':
mean_rel = np.array([x['abs_rel'] for x in outputs]).mean()
mean_diff = np.array([x['abs_diff'] for x in outputs]).mean()
mean_a1 = np.array([x['a1'] for x in outputs]).mean()
mean_a2 = np.array([x['a2'] for x in outputs]).mean()
mean_a3 = np.array([x['a3'] for x in outputs]).mean()
self.log('val_loss', mean_rel, prog_bar=True)
self.log('val/abs_diff', mean_diff)
self.log('val/abs_rel', mean_rel)
self.log('val/a1', mean_a1, on_epoch=True)
self.log('val/a2', mean_a2, on_epoch=True)
self.log('val/a3', mean_a3, on_epoch=True)
elif self.hparams.hparams.val_mode == 'photo':
mean_pl = np.array([x['photo_loss'] for x in outputs]).mean()
self.log('val_loss', mean_pl, prog_bar=True)