This repository was archived by the owner on Aug 2, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewcodejamhelper.py
138 lines (128 loc) · 5.33 KB
/
newcodejamhelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2011
# Jann Kleen [email protected]
# Thomas Maier [email protected]
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish, dis-
# tribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the fol-
# lowing conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
# ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
# SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
import os
from operator import itemgetter
#numpy is needed to run the function numpyMatrix_from_list(listData,conversionMap)
#from numpy import zeros
#use psyco for the module if you want.
#import psyco
#psyco.full()
DOWNLOAD_DIR = "/home/thomas/Downloads"
OUTPUT_DIR = "/home/thomas/Desktop"
OUTPUT_FILENAME = "codejam.out"
"""
this function scans the folder DOWNLOAD_DIR for files ending with ".in" or "in.txt" (Safari on OSX extends the file with "txt") and asks the user wich file shall be opened. a suggestion, pointing on the newest file, helps to choose the rigth one.
arguments: none
returns: a list with lines from the chosen file
"""
def get_file():
filenames = filter(lambda x: x[-3:] == ".in" or x[-7:] == ".in.txt", os.listdir(DOWNLOAD_DIR))
fileinfo = map(lambda fname: (fname, os.path.getmtime(os.path.join(DOWNLOAD_DIR, fname))), filenames)
if len(fileinfo) > 0:
print "[CodeJamHelper] %d files with extension *.in or *.in.txt found in %s" % (len(fileinfo),DOWNLOAD_DIR)
for idx in enumerate(fileinfo):
print "[CodeJamHelper] %s) %s" % (idx[0], idx[1][0])
while(True):
try:
suggestion = fileinfo.index(sorted(fileinfo, key=itemgetter(1), reverse=True)[0])
choice = raw_input("[CodeJamHelper] choice (%s):" % suggestion)
if choice == "":
choice = suggestion
else:
choice = int(choice)
except ValueError:
pass
else:
filename = fileinfo[choice]
break
print "[CodeJamHelper] opening %s" % filename[0]
with open(os.path.join(DOWNLOAD_DIR, filename[0])) as fp:
lines = map(lambda x: str.rstrip(x, "\n"), fp.readlines())
return lines
else:
print "[CodeJamHelper] no files in %s with extension *.in or *.in.txt found" % DOWNLOAD_DIR
"""
this function writes a list with strings (solutions) to the file OUTPUT_DIR/OUTPUT_FILENAME in "google code jam format".
example: ["solution1","solution2"] -> "Case #1: solution1\nCase #2: solution2"
arguments: a list with solutions
returns: none
"""
def put_file(lines):
for idx, line in enumerate(lines):
lines[idx] = "Case #%s: %s\n" % (idx+1, line)
print "[CodeJamHelper] writing %s lines to %s/%s" % (idx+1, OUTPUT_DIR, OUTPUT_FILENAME)
with open(os.path.join(OUTPUT_DIR, OUTPUT_FILENAME), 'w') as fp:
fp.writelines(lines)
"""
you can use this function to get the number of cases. it simply returns the first line (striped) from the input file.
arguments: list of strings, provided by function get_file()
returns: number of cases in the input file
"""
def get_case_count(inputList):
return int(inputList[0].strip())
"""
you can use this function to get the cases from the input file without the first line (number of cases).
arguments: list of strings, provided by function get_file()
returns: list with cases
"""
def get_case_list(inputList):
return inputList[1:]
"""
if the length of the cases (number of lines for each case) is for each case equal, you can use this function, to get a list with tuples for the cases. for the conversion, a description for the tuples is needed.
example:
inputList: ["2","3","A B C","5","A B C D E"]
tupleDesc: [int,str]
returns: [(3,"A B C"),(5,"A B C D E")]
arguments: a list of strings, provided by function get_file() and the description for the tuples
returns: a list with tuples containing the cases
"""
def get_case_tuples(inputList,tupleDesc):
inputTuples = []
for listPos in xrange(1,len(inputList),len(tupleDesc)):
tmp = []
for tuplePos in xrange(0,len(tupleDesc)):
tmp.append(tupleDesc[tuplePos](inputList[listPos+tuplePos]))
inputTuples.append(tuple(tmp))
return inputTuples
"""
this function transforms a list with tho dimensions (also a list with strings - the chars are the second dimension) in a numpy matrix. for transformation, a dictionary is needed, which describes the conversion rules for the list contents.
requires: numpy module
example:
listData: ["R.R","..R","BR."]
conversionMap: {"R":1,".":0,"B":-1}
returns:
[[ 1. 0. 1.]
[ 0. 0. 1.]
[-1. 1. 0.]]
arguments: list with data for the matrix and a dictionary with the conversion rules
returns: the new numpy matrix
"""
"""
def numpyMatrix_from_list(listData,conversionMap):
m,n = len(listData),len(listData[0])
A = zeros((m,n))
for mx in xrange(m):
for nx in xrange(n):
A[mx][nx] = conversionMap[listData[mx][nx]]
return A
"""