-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
49 lines (34 loc) · 1.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import streamlit as st
from tempfile import NamedTemporaryFile
from langchain.document_loaders import PyPDFLoader
from langchain.llms import CTransformers
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
def main():
st.title("Invoice Entity Extractor:books:")
uploaded_file = st.sidebar.file_uploader("Upload a PDF file", type="pdf")
if uploaded_file is not None:
# Save the uploaded file to a temporary location
with NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
loader = PyPDFLoader(temp_file_path)
pages = loader.load()
st.write(f"Number of pages: {len(pages)}")
for page in pages:
st.write(page.page_content)
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",model_type="llama",
config={'max_new_tokens':128,'temperature':0.01})
template = """Extract invoice number, name of organization, address, date,
Qty, Rate ,Tax ,Amount {pages}
Output : entity : type
"""
prompt_template = PromptTemplate(input_variables=["pages"], template=template)
chain = LLMChain(llm=llm, prompt=prompt_template)
result = chain.run(pages=pages[0].page_content)
st.write("Extracted entities:")
entities = result.strip().split("\n")
table_data = [line.split(":") for line in entities]
st.table(table_data)
if __name__ == "__main__":
main()