-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonkey_map.py
180 lines (125 loc) · 4.58 KB
/
monkey_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import re
import numpy as np
from utils import read_input, run, run_test
FNAME = "22/input.txt"
VOID = 0
WALKABLE = 1
WALL = 2
RIGHT = (0, 1)
DOWN = (1, 0)
LEFT = (0, -1)
UP = (-1, 0)
CUBE_SIZE = 50
DIRECTIONS = [RIGHT, DOWN, LEFT, UP]
def parse_input(input_file):
raw_map, raw_steps = read_input(input_file, separator='\n\n', parse_chunk=lambda l: l.splitlines())
grid = np.zeros((len(raw_map), max(len(row) for row in raw_map)))
for i, row in enumerate(raw_map):
for j, char in enumerate(row):
if char == '.':
grid[i, j] = WALKABLE
elif char == '#':
grid[i, j] = WALL
steps = [(int(dist), 1 if rot == 'R' else -1) for dist, rot in re.findall(r"([0-9]+)([LR]+)", raw_steps[0], re.I)]
steps.append((14, 0))
return grid, steps
##########
# PART 1 #
##########
def find_start(grid):
for i, tile in enumerate(grid[0]):
if tile == WALKABLE:
return (0, i)
def add_and_wrap(grid, pos, direction):
return tuple((a + b) % grid.shape[i] for i, (a, b) in enumerate(zip(pos, direction)))
def next_tile(grid, pos, direction):
tile = add_and_wrap(grid, pos, direction)
while grid[tile] == VOID:
tile = add_and_wrap(grid, tile, direction)
return tile
def move(grid, pos, dist, direction):
new_pos = pos
for _ in range(dist):
tile = next_tile(grid, new_pos, direction)
if grid[tile] == WALL:
break
new_pos = tile
return new_pos
def rotate_direction(direction, rot):
return DIRECTIONS[(DIRECTIONS.index(direction) + rot) % 4]
def part_one(input_file):
grid, steps = parse_input(input_file)
pos = find_start(grid)
direction = RIGHT
for dist, rot in steps:
pos = move(grid, pos, dist, direction)
direction = rotate_direction(direction, rot)
print(f"Moved {dist}, rotated {rot}, {direction=} {pos=}")
row, col = pos
return (row + 1) * 1000 + (col + 1) * 4 + DIRECTIONS.index(direction)
##########
# PART 2 #
##########
def add(pos, direction):
return tuple(a + b for a, b in zip(pos, direction))
def global_to_cube_face(pos):
return tuple(a // CUBE_SIZE for a in pos)
def cube_face_to_global(face):
return tuple(a * CUBE_SIZE for a in face)
def global_to_relative(pos):
return tuple(a % CUBE_SIZE for a in pos)
def in_grid(grid, coord):
return all(0 <= coord[i] < grid.shape[i] for i in range(2))
def rotate_relative_position(pos, rots):
for _ in range(rots):
x, y = pos
pos = (y, CUBE_SIZE - 1 - x)
return pos
def wrap_face(face, prev_face):
match (face, prev_face):
case (-1, 1), _: return ((3, 0), 1)
case (-1, 2), _: return ((3, 0), 0)
case (0, 0), _: return ((2, 0), 2)
case (0, 3), _: return ((2, 1), 2)
case (1, 0), (1, 1): return ((2, 0), 3)
case (1, 0), (2, 0): return ((1, 1), 1)
case (1, 2), (1, 1): return ((0, 2), 3)
case (1, 2), (0, 2): return ((1, 1), 1)
case (2, -1), _: return ((0, 1), 2)
case (2, 2), _: return ((0, 2), 2)
case (3, -1), _: return ((0, 1), 3)
case (3, 1), (3, 0): return ((2, 1), 3)
case (3, 1), (2, 1): return ((3, 0), 1)
case (4, 0), _: return ((0, 2), 0)
case _: raise Exception()
def wrap_position(prev_face, pos, direction):
face, rots = wrap_face(global_to_cube_face(pos), prev_face)
relative_pos = global_to_relative(pos)
new_pos = add(cube_face_to_global(face), rotate_relative_position(relative_pos, rots))
return new_pos, rotate_direction(direction, rots)
def next_cube_tile(grid, pos, direction):
tile = add(pos, direction)
if not in_grid(grid, tile) or grid[tile] == VOID:
tile, direction = wrap_position(global_to_cube_face(pos), tile, direction)
return tile, direction
def move_on_cube(grid, pos, dist, direction):
new_pos = pos
for _ in range(dist):
tile, new_direction = next_cube_tile(grid, new_pos, direction)
if grid[tile] == WALL:
break
new_pos = tile
direction = new_direction
return new_pos, direction
def part_two(input_file):
grid, steps = parse_input(input_file)
pos = find_start(grid)
direction = RIGHT
for dist, rot in steps:
pos, direction = move_on_cube(grid, pos, dist, direction)
direction = rotate_direction(direction, rot)
row, col = pos
return (row + 1) * 1000 + (col + 1) * 4 + DIRECTIONS.index(direction)
if __name__ == '__main__':
run_test(part_one, '22/test_input.txt', 6032, 'Example input')
run(part_one, part_two, FNAME)