-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (77 loc) · 2.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from gridworld import GridWorld
from agent import Agent
import random
import numpy as np
from plotter import plot_metrics
# Define constants
Rows = 3
Cols = 6
Start = (2, 0)
Goal = (0, 5)
Antennas = {
"A2": {"position": (2, 1), "Range": [(2, 0), (1, 1), (2, 2), (1, 0), (1, 2), (2, 1)]},
"A1": {"position": (0, 0), "Range": [(1, 0), (1, 1), (0, 1), (0, 0)]},
"A3": {"position": (0, 2), "Range": [(0, 1), (1, 1), (1, 2), (1, 3), (0, 3), (0, 2)]},
"A4": {"position": (1, 3), "Range": [(0, 2), (1, 2), (2, 2), (2, 3), (2, 4), (1, 4), (0, 4), (0, 3), (1, 3)]},
"A5": {"position": (0, 4), "Range": [(0, 3), (1, 3), (1, 4), (1, 5), (0, 5), (0, 4)]},
"A6": {"position": (2, 5), "Range": [(1, 4), (2, 4), (1, 5), (2, 5)]},
}
pos = [(0, 0), (2, 1), (0, 2), (1, 3), (0, 4), (2, 5)]
# Generate signal availability
signal_availability = {
(r, c): [a for a in Antennas.keys() if (r, c) in Antennas[a]["Range"]]
for r in range(Rows)
for c in range(Cols)
}
# Hyperparameters
Episodes = 6000
lr = 0.1
gamma = 0.95
eps = 0.82
n = 50
max_steps_per_episode = 150
eps_decaying_start = 0
eps_decaying_end = Episodes // 1.5
eps_decaying = eps / (eps_decaying_end - eps_decaying_start)
# Initialize environment and agent
env = GridWorld(Rows, Cols, Start, Goal, Antennas, pos)
agent = Agent(Rows, Cols, env.action_space, signal_availability)
agent.reset(Rows, Cols, signal_availability)
# Metrics for analysis
Rewards = []
steps_taken = []
Handovers = []
# Training loop
for ep in range(Episodes):
print(f"Episode: {ep}")
if eps_decaying_start < ep < eps_decaying_end:
eps -= eps_decaying
counter = 0
env.reset()
done = False
state = env.state
Reward_ep = 0
Handover_ep = 0
while not done and counter < max_steps_per_episode:
action = agent.action_selection(state)
antenna = agent.antenna_selection(state, action, eps, signal_availability, agent.Q)
next_state, reward, handover, done, _ = env.step(action, antenna, eps, signal_availability, agent.Q)
agent.Q_update(state, antenna, next_state, reward, lr, gamma, agent.Q)
Reward_ep += reward
Handover_ep += handover
print(f"Episode: {ep} | State: {state} -> Next State: {next_state}, Reward: {reward}, Accumulated Rewards: {Reward_ep}, Handovers: {Handover_ep}")
agent.Model_update(state, antenna, next_state, reward)
state = next_state
counter += 1
Rewards.append(Reward_ep)
Handovers.append(Handover_ep)
steps_taken.append(counter)
print("\n")
# Call plotter
plot_metrics(Episodes, Rewards, Handovers, steps_taken, eps, eps_decaying, "./metrics_plots")
# Summary
print(f"Total Episodes: {Episodes}")
print(f"Average Reward per Episode: {np.mean(Rewards):.2f}")
print(f"Total Handovers: {sum(Handovers)}")
print(f"Average Steps per Episode: {np.mean(steps_taken):.2f}")
print(f"Final Epsilon Value: {eps:.4f}\n\n")