|
5 | 5 | 
|
6 | 6 |
|
7 | 7 | Active Learning as a Service (ALaaS) is a fast and scalable framework for automatically selecting a subset to be labeled
|
8 |
| -from a full dataset so to reduce labeling cost. It provides a out-of-the-box and standalone experience for users to quickly |
| 8 | +from a full dataset so to reduce labeling cost. It provides an out-of-the-box and standalone experience for users to quickly |
9 | 9 | utilize active learning.
|
10 | 10 |
|
11 | 11 |
|
12 | 12 | ALaaS is featured for
|
13 | 13 |
|
14 | 14 | - :hatching_chick: **Easy-to-use** With <10 lines of code to start the system to employ active learning.
|
15 | 15 | - :rocket: **Fast** Use the stage-level parallellism to achieve over 10x speedup than under-optimized active learning process.
|
16 |
| -- :collision: **Elastic** Scale up and down multiple active workers, depending on the number of GPU devices. |
| 16 | +- :collision: **Elastic** Scale up and down multiple active workers, depending on the number of GPU devices. |
17 | 17 |
|
18 | 18 | *The project is still under the active development. Welcome to join us!*
|
19 | 19 |
|
20 |
| -- [Demo on AWS](https://github.com/MLSysOps/Active-Learning-as-a-Service#demo-on-aws-coffee) |
21 | 20 | - [Installation](https://github.com/MLSysOps/Active-Learning-as-a-Service#installation-construction)
|
22 | 21 | - [Quick Start](https://github.com/MLSysOps/Active-Learning-as-a-Service#quick-start-truck)
|
23 | 22 | - [ALaaS Server Customization (for Advance users)](https://github.com/MLSysOps/Active-Learning-as-a-Service#alaas-server-customization-wrench)
|
24 | 23 | - [Strategy Zoo](https://github.com/MLSysOps/Active-Learning-as-a-Service#strategy-zoo-art)
|
25 | 24 | - [Citation](https://github.com/MLSysOps/Active-Learning-as-a-Service#citation)
|
26 | 25 |
|
27 |
| -## Demo on AWS :coffee: |
28 |
| - |
29 |
| -**Free ALaaS demo on AWS (Support HTTP & gRPC)** |
30 |
| - |
31 |
| -Use least confidence sampling with [ResNet-18](https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html) |
32 |
| -to select images to be labeled for your tasks! |
33 |
| - |
34 |
| -We have deployed ALaaS on AWS for demonstration. Try it by yourself! |
35 |
| - |
36 |
| -<table> |
37 |
| -<tr> |
38 |
| -<td> Call ALaaS with HTTP 🌐 </td> |
39 |
| -<td> Call ALaaS with gRPC 🔐 </td> |
40 |
| -</tr> |
41 |
| -<tr> |
42 |
| -<td> |
43 |
| - |
44 |
| -```bash |
45 |
| -curl \ |
46 |
| --X POST http://13.213.29.8:8081/post \ |
47 |
| --H 'Content-Type: application/json' \ |
48 |
| --d '{"data":[{"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane1.png"}, |
49 |
| - {"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane2.png"}, |
50 |
| - {"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane3.png"}, |
51 |
| - {"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane4.png"}, |
52 |
| - {"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane5.png"}], |
53 |
| - "parameters": {"budget": 3}, |
54 |
| - "execEndpoint":"/query"}' |
55 |
| -``` |
56 |
| - |
57 |
| -</td> |
58 |
| -<td> |
59 |
| - |
60 |
| -```python |
61 |
| -# pip install alaas |
62 |
| -from alaas.client import Client |
63 |
| - |
64 |
| -url_list = [ |
65 |
| - 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane1.png', |
66 |
| - 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane2.png', |
67 |
| - 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane3.png', |
68 |
| - 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane4.png', |
69 |
| - 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane5.png' |
70 |
| -] |
71 |
| -client = Client('grpc://13.213.29.8:60035') |
72 |
| -print(client.query_by_uri(url_list, budget=3)) |
73 |
| -``` |
74 |
| -</td> |
75 |
| -</tr> |
76 |
| -</table> |
77 |
| - |
78 |
| - |
79 |
| -Then you will see 3 data samples (the most informative) has been selected from all the 5 data points by ALaaS. |
80 | 26 |
|
81 | 27 | ## Installation :construction:
|
82 | 28 |
|
|
0 commit comments