Skip to content

Commit 006e689

Browse files
committed
📝 docs:
1 parent f648710 commit 006e689

File tree

1 file changed

+2
-56
lines changed

1 file changed

+2
-56
lines changed

README.md

+2-56
Original file line numberDiff line numberDiff line change
@@ -5,78 +5,24 @@
55
![](./docs/images/logo.svg)
66

77
Active Learning as a Service (ALaaS) is a fast and scalable framework for automatically selecting a subset to be labeled
8-
from a full dataset so to reduce labeling cost. It provides a out-of-the-box and standalone experience for users to quickly
8+
from a full dataset so to reduce labeling cost. It provides an out-of-the-box and standalone experience for users to quickly
99
utilize active learning.
1010

1111

1212
ALaaS is featured for
1313

1414
- :hatching_chick: **Easy-to-use** With <10 lines of code to start the system to employ active learning.
1515
- :rocket: **Fast** Use the stage-level parallellism to achieve over 10x speedup than under-optimized active learning process.
16-
- :collision: **Elastic** Scale up and down multiple active workers, depending on the number of GPU devices.
16+
- :collision: **Elastic** Scale up and down multiple active workers, depending on the number of GPU devices.
1717

1818
*The project is still under the active development. Welcome to join us!*
1919

20-
- [Demo on AWS](https://github.com/MLSysOps/Active-Learning-as-a-Service#demo-on-aws-coffee)
2120
- [Installation](https://github.com/MLSysOps/Active-Learning-as-a-Service#installation-construction)
2221
- [Quick Start](https://github.com/MLSysOps/Active-Learning-as-a-Service#quick-start-truck)
2322
- [ALaaS Server Customization (for Advance users)](https://github.com/MLSysOps/Active-Learning-as-a-Service#alaas-server-customization-wrench)
2423
- [Strategy Zoo](https://github.com/MLSysOps/Active-Learning-as-a-Service#strategy-zoo-art)
2524
- [Citation](https://github.com/MLSysOps/Active-Learning-as-a-Service#citation)
2625

27-
## Demo on AWS :coffee:
28-
29-
**Free ALaaS demo on AWS (Support HTTP & gRPC)**
30-
31-
Use least confidence sampling with [ResNet-18](https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html)
32-
to select images to be labeled for your tasks!
33-
34-
We have deployed ALaaS on AWS for demonstration. Try it by yourself!
35-
36-
<table>
37-
<tr>
38-
<td> Call ALaaS with HTTP 🌐 </td>
39-
<td> Call ALaaS with gRPC 🔐 </td>
40-
</tr>
41-
<tr>
42-
<td>
43-
44-
```bash
45-
curl \
46-
-X POST http://13.213.29.8:8081/post \
47-
-H 'Content-Type: application/json' \
48-
-d '{"data":[{"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane1.png"},
49-
{"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane2.png"},
50-
{"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane3.png"},
51-
{"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane4.png"},
52-
{"uri": "https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane5.png"}],
53-
"parameters": {"budget": 3},
54-
"execEndpoint":"/query"}'
55-
```
56-
57-
</td>
58-
<td>
59-
60-
```python
61-
# pip install alaas
62-
from alaas.client import Client
63-
64-
url_list = [
65-
'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane1.png',
66-
'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane2.png',
67-
'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane3.png',
68-
'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane4.png',
69-
'https://www.cs.toronto.edu/~kriz/cifar-10-sample/airplane5.png'
70-
]
71-
client = Client('grpc://13.213.29.8:60035')
72-
print(client.query_by_uri(url_list, budget=3))
73-
```
74-
</td>
75-
</tr>
76-
</table>
77-
78-
79-
Then you will see 3 data samples (the most informative) has been selected from all the 5 data points by ALaaS.
8026

8127
## Installation :construction:
8228

0 commit comments

Comments
 (0)