-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest_stochastic_updates.py
53 lines (42 loc) · 1.56 KB
/
test_stochastic_updates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import heavyball
import heavyball.utils
import pytest
import torch
from benchmark.utils import get_optim
from heavyball.utils import clean, set_torch, PSGDBase
from torch import nn
def get_memory():
clean()
torch.cuda.synchronize()
clean()
torch.cuda.synchronize()
return torch.cuda.memory_allocated()
@pytest.mark.parametrize("opt", heavyball.__all__)
@pytest.mark.parametrize("size,depth", [(128, 1)])
def test_foreach(opt, size, depth: int, iterations: int = 8192, outer_iterations: int = 3):
set_torch()
opt = getattr(heavyball, opt)
if not issubclass(opt, PSGDBase):
raise pytest.skip('Only PSGD is supported')
peaks = []
losses = []
for stochastic in [False, True]:
print('stochastic', stochastic)
torch.manual_seed(0x2131290)
peaks.append([])
losses.append([])
for i in range(outer_iterations):
model = nn.Sequential(*[nn.Linear(size, size, bias=False) for _ in range(depth)]).cuda()
o = get_optim(opt, model.parameters(), lr=1e-3, stochastic_schedule=stochastic)
for _ in range(iterations):
loss = model(torch.randn((128, size), device-'cuda')).square().mean()
loss.backward()
o.step()
o.zero_grad()
losses[-1].append(loss.detach())
del model, o
clean()
stochastic = sum([l.item() for l in losses[1]])
deterministic = sum([l.item() for l in losses[0]])
print(f"{deterministic=}, {stochastic=}")
assert deterministic < stochastic