-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest_channels_last.py
52 lines (40 loc) · 1.55 KB
/
test_channels_last.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
os.environ["TORCH_LOGS"] = "+recompiles"
import heavyball
import heavyball.utils
import pytest
import torch
from benchmark.utils import get_optim
from heavyball.utils import clean, set_torch
from torch import nn
from torch._dynamo import config
heavyball.utils.zeroth_power_mode = 'newtonschulz'
heavyball.utils.compile_mode = 'default'
config.cache_size_limit = 128
@pytest.mark.parametrize("opt", heavyball.__all__)
@pytest.mark.parametrize("size,depth", [(128, 1)])
def test_foreach(opt, size, depth: int, iterations: int = 1024, outer_iterations: int = 1):
set_torch()
opt = getattr(heavyball, opt)
peaks = []
losses = []
for is_channels_last in [False, True]:
torch.manual_seed(0x2131290)
peaks.append([])
losses.append([])
for i in range(outer_iterations):
model = nn.Sequential(*[nn.Conv2d(size, size, 3) for _ in range(depth)]).cuda()
if is_channels_last:
model.to(memory_format=torch.channels_last)
o = get_optim(opt, model.parameters(), lr=1e-3, weight_decay=1e-4, warmup_steps=16)
for _ in range(iterations):
loss = model(torch.randn((1024, size, 4, 4), device='cuda')).square().mean()
loss.backward()
o.step()
o.zero_grad()
losses[-1].append(loss.detach())
del model, o
clean()
for i, (l0, l1) in enumerate(zip(*losses)):
print(i, l0.item(), l1.item())
assert torch.allclose(l0.float(), l1.float(), rtol=0.1)