-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcompute.py
64 lines (49 loc) · 1.77 KB
/
compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def get_longest_palindrome(s):
cache = {}
def _get_longest_palindrome(s, i, j):
if (i, j) in cache:
return cache[i, j]
if i == j:
return 1
if i + 1 == j:
if s[i] == s[j]:
return 2
else:
return 1
if s[i] != s[j]:
res = max(_get_longest_palindrome(s, i, j - 1), _get_longest_palindrome(s, i + 1, j))
cache[i, j] = res
return res
res = _get_longest_palindrome(s, i + 1, j - 1) + 2
cache[i, j] = res
return res
return _get_longest_palindrome(s, 0, len(s) - 1)
def compute_recurrence_relation_formula(coefficients, base_values, index, cache):
max_deep = 100
big_modulus = 10 ** 9 + 7
def _compute_recurrence_relation_formula(coefficients, base_values, index, deep):
if index in cache:
return cache[index]
if deep >= max_deep:
return None
if index in base_values:
return base_values[index]
res = 0
for i in range(len(coefficients) - 1):
coef_res = _compute_recurrence_relation_formula(coefficients, base_values, index - i - 1, deep + 1)
if coef_res is None:
return None
res += coefficients[i] * coef_res
res %= big_modulus
res += coefficients[len(coefficients) - 1]
res %= big_modulus
cache[index] = res
return res
return _compute_recurrence_relation_formula(coefficients, base_values, index, 0)
def compute_recurrence_relation_formula_by_field(field, arg, cache):
return compute_recurrence_relation_formula(
field['content']['coefficients'],
dict(field['content']['base']),
arg,
cache
)