-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvis-conv.py
50 lines (35 loc) · 1.33 KB
/
vis-conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pylab as pl
import matplotlib.cm as cm
import numpy as np
from keras import backend as K
from model import *
from utils import *
from config import *
from keras.optimizers import Adam
opt = Adam(lr=1E-3, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
gen = Generator((sequence_length, size, size, input), output, kernel_depth, size*size*sequence_length)
gen.compile(loss='mae', optimizer=opt)
gen.load_weights(checkpoint_gen_name)
model = load_model(checkpoint_gen_name)
model.summary()
convout32_f = model.get_layer(conv_32).output
#convout16_f= model.get_layer(conv_16).output
#convout8_f= model.get_layer(conv_8).output
#upconvout16_f= model.get_layer(up_conv_16).output
#upconvout32_f= model.get_layer(up_conv_32).output
# List sequences
sequences = prepare_data(test_dir)
progbar = keras.utils.Progbar(len(sequences))
for s in range(len(sequences)):
progbar.add(1)
sequence = sequences[s]
x, y = load(sequence, sequence_length)
for i in range(len(x)):
# predict
C1=convout32_f(x)
C1= np.squeeze(C1)
print("C1 shape : ",C1.shape)
Pl.figure(figsize=(15,15))
pl.suptitle('conv1out')
nice_imshow(pl.gca(), make_mosaic(C1, 6, 6), cmap=cm.binary)
save_image(x[i] / 2 + 0.5, y[i], re_shape(generated_y), convvis_dir + "conv32{}.png".format(s)) ???