-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScanner.py
134 lines (105 loc) · 4.14 KB
/
Scanner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import cv2
import numpy as np
import argparse
import math
try:
from PIL import Image
except ImportError:
import Image
import pytesseract
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract'
def ocr_core(filename):
"""
This function will handle the core OCR processing of images.
"""
text = pytesseract.image_to_string(Image.open(filename)) # We'll use Pillow's Image class to open the image and pytesseract to detect the string in the image
return text
def getDistance(x1,y1,x2,y2):
return math.sqrt( pow( abs(x2)-abs(x1) ,2) + pow( abs(y2)-abs(y1) ,2) )
def arrangePoints(unarranged):
unarranged = unarranged.reshape((4,2))
arranged = np.zeros((4, 2), dtype=np.float32)
add = unarranged.sum(1)
arranged[0] = unarranged[np.argmin(add)]
arranged[2] = unarranged[np.argmax(add)]
diff = np.diff(unarranged, axis=1)
arranged[1] = unarranged[np.argmin(diff)]
arranged[3] = unarranged[np.argmax(diff)]
return arranged
# get image from arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", help="path to the image file")
ap.add_argument("-e", "--enhance", help="black enhancement level (1-10)")
ap.add_argument("-l", "--length", help="image maximum side length")
ap.add_argument("-s", "--save", help="output image name and location")
args = vars(ap.parse_args())
f1 = float(args["enhance"])
image = cv2.imread(args["image"])
# scale image
scale_percent = 70 # percent of original size
dim = (int(image.shape[1] * scale_percent / 100), int(image.shape[0] * scale_percent / 100))
image = cv2.resize(image, dsize=dim, interpolation=cv2.INTER_AREA)
# get grayscale image
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# blur image for better contour detection
gray = cv2.GaussianBlur(gray, (9, 9), 1)
# detect edges
edges = cv2.Canny(gray, 30, 50)
# get contours
contours, hierarchy = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# sort contours
contours = sorted(contours, key=cv2.contourArea, reverse=True)
height, width, channels = image.shape
paper = [[0, 0], [width, 0], [width, height], [0, height]]
# search contours for paper
for cnt in contours:
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if len(approx) == 4:
paper = approx
print(approx)
print(width * height)
# arrange detected edges
paper = arrangePoints(paper)
print(paper)
break
# draw edges on original image
cv2.circle(image, (paper[0][0], paper[0][1]), 2, (0, 0, 255), 2)
cv2.circle(image, (paper[1][0], paper[1][1]), 2, (0, 255, 0), 2)
cv2.circle(image, (paper[2][0], paper[2][1]), 2, (255, 0, 0), 2)
cv2.circle(image, (paper[3][0], paper[3][1]), 2, (255, 255, 0), 2)
cv2.imshow("Found Paper", image)
cv2.waitKey(0)
if abs(paper[0][0] - paper[1][0]) * abs(paper[0][1] - paper[2][1]) > (height * width / 3) :
# detect width to height ratio and set image size accordingly
width = getDistance(paper[0][0], paper[0][1], paper[1][0], paper[1][1])
height = getDistance(paper[0][0], paper[0][1], paper[3][0], paper[3][1])
if width < height:
ratio = width/height
height = int(args["length"])
width = height * ratio
if height < width:
ratio = height/width
width = int(args["length"])
height = width*ratio
frame = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
# get perspective transformation matrix
M = cv2.getPerspectiveTransform(paper, frame)
# apply matrix to get perspective corrected image
warped = cv2.warpPerspective(image, M, (int(width), int(height)))
# get grayscale version of warped image
final = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
# get image threshold and enhance black
ret, finalThresh = cv2.threshold(final, 127, 255, 0)
final = cv2.addWeighted(final, 1-f1/10, finalThresh, f1/10, 0)
# display
cv2.imshow(args["image"], image)
cv2.imshow("warped", final)
# save
cv2.imwrite(args["save"], final)
print(ocr_core(args["save"]))
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
print(ocr_core(args["image"]))
cv2.waitKey(0)
cv2.destroyAllWindows()