-
Notifications
You must be signed in to change notification settings - Fork 375
/
Copy pathstripack.c
3216 lines (2505 loc) · 91.3 KB
/
stripack.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* stripack.c: Translated via f2c then massaged so that f2c include and lib
* are not required to compile and link the sph supplement.
*
* All these functions are local (static) and included into gmt_sph.c where they are used.
*/
/* Common Block Declarations */
static struct {
doublereal y;
} stcom_;
#define stcom_1 stcom_
GMT_LOCAL doublereal store_(doublereal *x) {
/* System generated locals */
doublereal ret_val;
/* *********************************************************** */
/* From STRIPACK */
/* Robert J. Renka */
/* Dept. of Computer Science */
/* Univ. of North Texas */
/* [email protected] */
/* 05/09/92 */
/* This function forces its argument X to be stored in a */
/* memory location, thus providing a means of determining */
/* floating point number characteristics (such as the machine */
/* precision) when it is necessary to avoid computation in */
/* high precision registers. */
/* On input: */
/* X = Value to be stored. */
/* X is not altered by this function. */
/* On output: */
/* STORE = Value of X after it has been stored and */
/* possibly truncated or rounded to the single */
/* precision word length. */
/* Modules required by STORE: None */
/* *********************************************************** */
stcom_1.y = *x;
ret_val = stcom_1.y;
return ret_val;
} /* store_ */
GMT_LOCAL integer jrand_(integer *n, integer *ix, integer *iy, integer *iz) {
/* System generated locals */
integer ret_val;
/* Local variables */
static doublereal u, x;
/* *********************************************************** */
/* From STRIPACK */
/* Robert J. Renka */
/* Dept. of Computer Science */
/* Univ. of North Texas */
/* [email protected] */
/* 07/28/98 */
/* This function returns a uniformly distributed pseudo- */
/* random integer in the range 1 to N. */
/* On input: */
/* N = Maximum value to be returned. */
/* N is not altered by this function. */
/* IX,IY,IZ = Integer seeds initialized to values in */
/* the range 1 to 30,000 before the first */
/* call to JRAND, and not altered between */
/* subsequent calls (unless a sequence of */
/* random numbers is to be repeated by */
/* reinitializing the seeds). */
/* On output: */
/* IX,IY,IZ = Updated integer seeds. */
/* JRAND = Random integer in the range 1 to N. */
/* Reference: B. A. Wichmann and I. D. Hill, "An Efficient */
/* and Portable Pseudo-random Number Generator", */
/* Applied Statistics, Vol. 31, No. 2, 1982, */
/* pp. 188-190. */
/* Modules required by JRAND: None */
/* Intrinsic functions called by JRAND: INT, MOD, REAL */
/* *********************************************************** */
/* Local parameters: */
/* U = Pseudo-random number uniformly distributed in the */
/* interval (0,1). */
/* X = Pseudo-random number in the range 0 to 3 whose frac- */
/* tional part is U. */
*ix = *ix * 171 % 30269;
*iy = *iy * 172 % 30307;
*iz = *iz * 170 % 30323;
x = (doublereal) (*ix) / 30269. + (doublereal) (*iy) / 30307. + (
doublereal) (*iz) / 30323.;
u = x - (integer) x;
ret_val = (integer) ((doublereal) (*n) * u + 1.);
return ret_val;
} /* jrand_ */
GMT_LOCAL integer lstptr_(integer *lpl, integer *nb, integer *list, integer *lptr) {
/* System generated locals */
integer ret_val;
/* Local variables */
static integer nd, lp;
/* *********************************************************** */
/* From STRIPACK */
/* Robert J. Renka */
/* Dept. of Computer Science */
/* Univ. of North Texas */
/* [email protected] */
/* 07/15/96 */
/* This function returns the index (LIST pointer) of NB in */
/* the adjacency list for N0, where LPL = LEND(N0). */
/* This function is identical to the similarly named */
/* function in TRIPACK. */
/* On input: */
/* LPL = LEND(N0) */
/* NB = Index of the node whose pointer is to be re- */
/* turned. NB must be connected to N0. */
/* LIST,LPTR = Data structure defining the triangula- */
/* tion. Refer to Subroutine TRMESH. */
/* Input parameters are not altered by this function. */
/* On output: */
/* LSTPTR = Pointer such that LIST(LSTPTR) = NB or */
/* LIST(LSTPTR) = -NB, unless NB is not a */
/* neighbor of N0, in which case LSTPTR = LPL. */
/* Modules required by LSTPTR: None */
/* *********************************************************** */
/* Local parameters: */
/* LP = LIST pointer */
/* ND = Nodal index */
/* Parameter adjustments */
--lptr;
--list;
/* Function Body */
lp = lptr[*lpl];
L1:
nd = list[lp];
if (nd == *nb) {
goto L2;
}
lp = lptr[lp];
if (lp != *lpl) {
goto L1;
}
L2:
ret_val = lp;
return ret_val;
} /* lstptr_ */
GMT_LOCAL integer swap_(integer *in1, integer *in2, integer *io1, integer *io2, integer *list, integer *lptr, integer *lend, integer *lp21) {
/* System generated locals */
integer i__1;
/* Local variables */
static integer lp, lph, lpsav;
/* *********************************************************** */
/* From STRIPACK */
/* Robert J. Renka */
/* Dept. of Computer Science */
/* Univ. of North Texas */
/* [email protected] */
/* 06/22/98 */
/* Given a triangulation of a set of points on the unit */
/* sphere, this subroutine replaces a diagonal arc in a */
/* strictly convex quadrilateral (defined by a pair of adja- */
/* cent triangles) with the other diagonal. Equivalently, a */
/* pair of adjacent triangles is replaced by another pair */
/* having the same union. */
/* On input: */
/* IN1,IN2,IO1,IO2 = Nodal indexes of the vertices of */
/* the quadrilateral. IO1-IO2 is re- */
/* placed by IN1-IN2. (IO1,IO2,IN1) */
/* and (IO2,IO1,IN2) must be trian- */
/* gles on input. */
/* The above parameters are not altered by this routine. */
/* LIST,LPTR,LEND = Data structure defining the trian- */
/* gulation. Refer to Subroutine */
/* TRMESH. */
/* On output: */
/* LIST,LPTR,LEND = Data structure updated with the */
/* swap -- triangles (IO1,IO2,IN1) and */
/* (IO2,IO1,IN2) are replaced by */
/* (IN1,IN2,IO2) and (IN2,IN1,IO1) */
/* unless LP21 = 0. */
/* LP21 = Index of IN1 as a neighbor of IN2 after the */
/* swap is performed unless IN1 and IN2 are */
/* adjacent on input, in which case LP21 = 0. */
/* Module required by SWAP: LSTPTR */
/* Intrinsic function called by SWAP: ABS */
/* *********************************************************** */
/* Local parameters: */
/* LP,LPH,LPSAV = LIST pointers */
/* Test for IN1 and IN2 adjacent. */
/* Parameter adjustments */
--lend;
--lptr;
--list;
/* Function Body */
lp = lstptr_(&lend[*in1], in2, &list[1], &lptr[1]);
if ((i__1 = list[lp], int64_abs(i__1)) == *in2) {
*lp21 = 0;
return 0;
}
/* Delete IO2 as a neighbor of IO1. */
lp = lstptr_(&lend[*io1], in2, &list[1], &lptr[1]);
lph = lptr[lp];
lptr[lp] = lptr[lph];
/* If IO2 is the last neighbor of IO1, make IN2 the */
/* last neighbor. */
if (lend[*io1] == lph) {
lend[*io1] = lp;
}
/* Insert IN2 as a neighbor of IN1 following IO1 */
/* using the hole created above. */
lp = lstptr_(&lend[*in1], io1, &list[1], &lptr[1]);
lpsav = lptr[lp];
lptr[lp] = lph;
list[lph] = *in2;
lptr[lph] = lpsav;
/* Delete IO1 as a neighbor of IO2. */
lp = lstptr_(&lend[*io2], in1, &list[1], &lptr[1]);
lph = lptr[lp];
lptr[lp] = lptr[lph];
/* If IO1 is the last neighbor of IO2, make IN1 the */
/* last neighbor. */
if (lend[*io2] == lph) {
lend[*io2] = lp;
}
/* Insert IN1 as a neighbor of IN2 following IO2. */
lp = lstptr_(&lend[*in2], io2, &list[1], &lptr[1]);
lpsav = lptr[lp];
lptr[lp] = lph;
list[lph] = *in1;
lptr[lph] = lpsav;
*lp21 = lph;
return 0;
} /* swap_ */
GMT_LOCAL integer insert_(integer *k, integer *lp, integer *list, integer *lptr, integer *lnew) {
static integer lsav;
/* *********************************************************** */
/* From STRIPACK */
/* Robert J. Renka */
/* Dept. of Computer Science */
/* Univ. of North Texas */
/* [email protected] */
/* 07/17/96 */
/* This subroutine inserts K as a neighbor of N1 following */
/* N2, where LP is the LIST pointer of N2 as a neighbor of */
/* N1. Note that, if N2 is the last neighbor of N1, K will */
/* become the first neighbor (even if N1 is a boundary node). */
/* This routine is identical to the similarly named routine */
/* in TRIPACK. */
/* On input: */
/* K = Index of the node to be inserted. */
/* LP = LIST pointer of N2 as a neighbor of N1. */
/* The above parameters are not altered by this routine. */
/* LIST,LPTR,LNEW = Data structure defining the trian- */
/* gulation. Refer to Subroutine */
/* TRMESH. */
/* On output: */
/* LIST,LPTR,LNEW = Data structure updated with the */
/* addition of node K. */
/* Modules required by INSERT: None */
/* *********************************************************** */
/* Parameter adjustments */
--lptr;
--list;
/* Function Body */
lsav = lptr[*lp];
lptr[*lp] = *lnew;
list[*lnew] = *k;
lptr[*lnew] = lsav;
++(*lnew);
return 0;
} /* insert_ */
GMT_LOCAL integer bdyadd_(integer *kk, integer *i1, integer *i2, integer *list, integer *lptr, integer *lend, integer *lnew) {
static integer k, n1, n2, lp, lsav, nsav, next;
/* *********************************************************** */
/* From STRIPACK */
/* Robert J. Renka */
/* Dept. of Computer Science */
/* Univ. of North Texas */
/* [email protected] */
/* 07/11/96 */
/* This subroutine adds a boundary node to a triangulation */
/* of a set of KK-1 points on the unit sphere. The data */
/* structure is updated with the insertion of node KK, but no */
/* optimization is performed. */
/* This routine is identical to the similarly named routine */
/* in TRIPACK. */
/* On input: */
/* KK = Index of a node to be connected to the sequence */
/* of all visible boundary nodes. KK .GE. 1 and */
/* KK must not be equal to I1 or I2. */
/* I1 = First (rightmost as viewed from KK) boundary */
/* node in the triangulation that is visible from */
/* node KK (the line segment KK-I1 intersects no */
/* arcs. */
/* I2 = Last (leftmost) boundary node that is visible */
/* from node KK. I1 and I2 may be determined by */
/* Subroutine TRFIND. */
/* The above parameters are not altered by this routine. */
/* LIST,LPTR,LEND,LNEW = Triangulation data structure */
/* created by Subroutine TRMESH. */
/* Nodes I1 and I2 must be in- */
/* cluded in the triangulation. */
/* On output: */
/* LIST,LPTR,LEND,LNEW = Data structure updated with */
/* the addition of node KK. Node */
/* KK is connected to I1, I2, and */
/* all boundary nodes in between. */
/* Module required by BDYADD: INSERT */
/* *********************************************************** */
/* Local parameters: */
/* K = Local copy of KK */
/* LP = LIST pointer */
/* LSAV = LIST pointer */
/* N1,N2 = Local copies of I1 and I2, respectively */
/* NEXT = Boundary node visible from K */
/* NSAV = Boundary node visible from K */
/* Parameter adjustments */
--lend;
--lptr;
--list;
/* Function Body */
k = *kk;
n1 = *i1;
n2 = *i2;
/* Add K as the last neighbor of N1. */
lp = lend[n1];
lsav = lptr[lp];
lptr[lp] = *lnew;
list[*lnew] = -k;
lptr[*lnew] = lsav;
lend[n1] = *lnew;
++(*lnew);
next = -list[lp];
list[lp] = next;
nsav = next;
/* Loop on the remaining boundary nodes between N1 and N2, */
/* adding K as the first neighbor. */
L1:
lp = lend[next];
insert_(&k, &lp, &list[1], &lptr[1], lnew);
if (next == n2) {
goto L2;
}
next = -list[lp];
list[lp] = next;
goto L1;
/* Add the boundary nodes between N1 and N2 as neighbors */
/* of node K. */
L2:
lsav = *lnew;
list[*lnew] = n1;
lptr[*lnew] = *lnew + 1;
++(*lnew);
next = nsav;
L3:
if (next == n2) {
goto L4;
}
list[*lnew] = next;
lptr[*lnew] = *lnew + 1;
++(*lnew);
lp = lend[next];
next = list[lp];
goto L3;
L4:
list[*lnew] = -n2;
lptr[*lnew] = lsav;
lend[k] = *lnew;
++(*lnew);
return 0;
} /* bdyadd_ */
GMT_LOCAL integer intadd_(integer *kk, integer *i1, integer *i2, integer * i3, integer *list, integer *lptr, integer *lend, integer *lnew) {
static integer k, n1, n2, n3, lp;
/* *********************************************************** */
/* From STRIPACK */
/* Robert J. Renka */
/* Dept. of Computer Science */
/* Univ. of North Texas */
/* [email protected] */
/* 07/17/96 */
/* This subroutine adds an interior node to a triangulation */
/* of a set of points on the unit sphere. The data structure */
/* is updated with the insertion of node KK into the triangle */
/* whose vertices are I1, I2, and I3. No optimization of the */
/* triangulation is performed. */
/* This routine is identical to the similarly named routine */
/* in TRIPACK. */
/* On input: */
/* KK = Index of the node to be inserted. KK .GE. 1 */
/* and KK must not be equal to I1, I2, or I3. */
/* I1,I2,I3 = Indexes of the counterclockwise-ordered */
/* sequence of vertices of a triangle which */
/* contains node KK. */
/* The above parameters are not altered by this routine. */
/* LIST,LPTR,LEND,LNEW = Data structure defining the */
/* triangulation. Refer to Sub- */
/* routine TRMESH. Triangle */
/* (I1,I2,I3) must be included */
/* in the triangulation. */
/* On output: */
/* LIST,LPTR,LEND,LNEW = Data structure updated with */
/* the addition of node KK. KK */
/* will be connected to nodes I1, */
/* I2, and I3. */
/* Modules required by INTADD: INSERT, LSTPTR */
/* *********************************************************** */
/* Local parameters: */
/* K = Local copy of KK */
/* LP = LIST pointer */
/* N1,N2,N3 = Local copies of I1, I2, and I3 */
/* Parameter adjustments */
--lend;
--lptr;
--list;
/* Function Body */
k = *kk;
/* Initialization. */
n1 = *i1;
n2 = *i2;
n3 = *i3;
/* Add K as a neighbor of I1, I2, and I3. */
lp = lstptr_(&lend[n1], &n2, &list[1], &lptr[1]);
insert_(&k, &lp, &list[1], &lptr[1], lnew);
lp = lstptr_(&lend[n2], &n3, &list[1], &lptr[1]);
insert_(&k, &lp, &list[1], &lptr[1], lnew);
lp = lstptr_(&lend[n3], &n1, &list[1], &lptr[1]);
insert_(&k, &lp, &list[1], &lptr[1], lnew);
/* Add I1, I2, and I3 as neighbors of K. */
list[*lnew] = n1;
list[*lnew + 1] = n2;
list[*lnew + 2] = n3;
lptr[*lnew] = *lnew + 1;
lptr[*lnew + 1] = *lnew + 2;
lptr[*lnew + 2] = *lnew;
lend[k] = *lnew + 2;
*lnew += 3;
return 0;
} /* intadd_ */
GMT_LOCAL integer trfind_(integer *nst, doublereal *p, integer *n, doublereal *x, doublereal *y, doublereal *z__, integer *list, integer *lptr, integer *lend, doublereal *b1, doublereal *b2, doublereal *b3, integer *i1, integer *i2, integer *i3) {
/* Initialized data */
static integer ix = 1;
static integer iy = 2;
static integer iz = 3;
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Local variables */
static doublereal q[3];
static integer n0, n1, n2, n3, n4, nf;
static doublereal s12;
static integer nl, lp;
static doublereal xp, yp, zp;
static integer n1s, n2s;
static doublereal eps, tol, ptn1, ptn2;
static integer next;
/* *********************************************************** */
/* From STRIPACK */
/* Robert J. Renka */
/* Dept. of Computer Science */
/* Univ. of North Texas */
/* [email protected] */
/* 11/30/99 */
/* This subroutine locates a point P relative to a triangu- */
/* lation created by Subroutine TRMESH. If P is contained in */
/* a triangle, the three vertex indexes and barycentric coor- */
/* dinates are returned. Otherwise, the indexes of the */
/* visible boundary nodes are returned. */
/* On input: */
/* NST = Index of a node at which TRFIND begins its */
/* search. Search time depends on the proximity */
/* of this node to P. */
/* P = Array of length 3 containing the x, y, and z */
/* coordinates (in that order) of the point P to be */
/* located. */
/* N = Number of nodes in the triangulation. N .GE. 3. */
/* X,Y,Z = Arrays of length N containing the Cartesian */
/* coordinates of the triangulation nodes (unit */
/* vectors). (X(I),Y(I),Z(I)) defines node I */
/* for I = 1 to N. */
/* LIST,LPTR,LEND = Data structure defining the trian- */
/* gulation. Refer to Subroutine */
/* TRMESH. */
/* Input parameters are not altered by this routine. */
/* On output: */
/* B1,B2,B3 = Unnormalized barycentric coordinates of */
/* the central projection of P onto the un- */
/* derlying planar triangle if P is in the */
/* convex hull of the nodes. These parame- */
/* ters are not altered if I1 = 0. */
/* I1,I2,I3 = Counterclockwise-ordered vertex indexes */
/* of a triangle containing P if P is con- */
/* tained in a triangle. If P is not in the */
/* convex hull of the nodes, I1 and I2 are */
/* the rightmost and leftmost (boundary) */
/* nodes that are visible from P, and */
/* I3 = 0. (If all boundary nodes are vis- */
/* ible from P, then I1 and I2 coincide.) */
/* I1 = I2 = I3 = 0 if P and all of the */
/* nodes are coplanar (lie on a common great */
/* circle. */
/* Modules required by TRFIND: JRAND, LSTPTR, STORE */
/* Intrinsic function called by TRFIND: ABS */
/* *********************************************************** */
/* Parameter adjustments */
--p;
--lend;
--z__;
--y;
--x;
--list;
--lptr;
/* Function Body */
/* Local parameters: */
/* EPS = Machine precision */
/* IX,IY,IZ = Integer seeds for JRAND */
/* LP = LIST pointer */
/* N0,N1,N2 = Nodes in counterclockwise order defining a */
/* cone (with vertex N0) containing P, or end- */
/* points of a boundary edge such that P Right */
/* N1->N2 */
/* N1S,N2S = Initially-determined values of N1 and N2 */
/* N3,N4 = Nodes opposite N1->N2 and N2->N1, respectively */
/* NEXT = Candidate for I1 or I2 when P is exterior */
/* NF,NL = First and last neighbors of N0, or first */
/* (rightmost) and last (leftmost) nodes */
/* visible from P when P is exterior to the */
/* triangulation */
/* PTN1 = Scalar product <P,N1> */
/* PTN2 = Scalar product <P,N2> */
/* Q = (N2 X N1) X N2 or N1 X (N2 X N1) -- used in */
/* the boundary traversal when P is exterior */
/* S12 = Scalar product <N1,N2> */
/* TOL = Tolerance (multiple of EPS) defining an upper */
/* bound on the magnitude of a negative bary- */
/* centric coordinate (B1 or B2) for P in a */
/* triangle -- used to avoid an infinite number */
/* of restarts with 0 <= B3 < EPS and B1 < 0 or */
/* B2 < 0 but small in magnitude */
/* XP,YP,ZP = Local variables containing P(1), P(2), and P(3) */
/* X0,Y0,Z0 = Dummy arguments for DET */
/* X1,Y1,Z1 = Dummy arguments for DET */
/* X2,Y2,Z2 = Dummy arguments for DET */
/* Statement function: */
/* DET(X1,...,Z0) .GE. 0 if and only if (X0,Y0,Z0) is in the */
/* (closed) left hemisphere defined by */
/* the plane containing (0,0,0), */
/* (X1,Y1,Z1), and (X2,Y2,Z2), where */
/* left is defined relative to an ob- */
/* server at (X1,Y1,Z1) facing */
/* (X2,Y2,Z2). */
/* Initialize variables. */
xp = p[1];
yp = p[2];
zp = p[3];
n0 = *nst;
if (n0 < 1 || n0 > *n) {
n0 = jrand_(n, &ix, &iy, &iz);
}
/* Compute the relative machine precision EPS and TOL. */
eps = 1.;
L1:
eps /= 2.;
d__1 = eps + 1.;
if (store_(&d__1) > 1.) {
goto L1;
}
eps *= 2.;
tol = eps * 100.;
/* Set NF and NL to the first and last neighbors of N0, and */
/* initialize N1 = NF. */
L2:
lp = lend[n0];
nl = list[lp];
lp = lptr[lp];
nf = list[lp];
n1 = nf;
/* Find a pair of adjacent neighbors N1,N2 of N0 that define */
/* a wedge containing P: P LEFT N0->N1 and P RIGHT N0->N2. */
if (nl > 0) {
/* N0 is an interior node. Find N1. */
L3:
if (xp * (y[n0] * z__[n1] - y[n1] * z__[n0]) - yp * (x[n0] * z__[n1]
- x[n1] * z__[n0]) + zp * (x[n0] * y[n1] - x[n1] * y[n0]) <
0.) {
lp = lptr[lp];
n1 = list[lp];
if (n1 == nl) {
goto L6;
}
goto L3;
}
} else {
/* N0 is a boundary node. Test for P exterior. */
nl = -nl;
if (xp * (y[n0] * z__[nf] - y[nf] * z__[n0]) - yp * (x[n0] * z__[nf]
- x[nf] * z__[n0]) + zp * (x[n0] * y[nf] - x[nf] * y[n0]) <
0.) {
/* P is to the right of the boundary edge N0->NF. */
n1 = n0;
n2 = nf;
goto L9;
}
if (xp * (y[nl] * z__[n0] - y[n0] * z__[nl]) - yp * (x[nl] * z__[n0]
- x[n0] * z__[nl]) + zp * (x[nl] * y[n0] - x[n0] * y[nl]) <
0.) {
/* P is to the right of the boundary edge NL->N0. */
n1 = nl;
n2 = n0;
goto L9;
}
}
/* P is to the left of arcs N0->N1 and NL->N0. Set N2 to the */
/* next neighbor of N0 (following N1). */
L4:
lp = lptr[lp];
n2 = (i__1 = list[lp], int64_abs(i__1));
if (xp * (y[n0] * z__[n2] - y[n2] * z__[n0]) - yp * (x[n0] * z__[n2] - x[
n2] * z__[n0]) + zp * (x[n0] * y[n2] - x[n2] * y[n0]) < 0.) {
goto L7;
}
n1 = n2;
if (n1 != nl) {
goto L4;
}
if (xp * (y[n0] * z__[nf] - y[nf] * z__[n0]) - yp * (x[n0] * z__[nf] - x[
nf] * z__[n0]) + zp * (x[n0] * y[nf] - x[nf] * y[n0]) < 0.) {
goto L6;
}
/* P is left of or on arcs N0->NB for all neighbors NB */
/* of N0. Test for P = +/-N0. */
d__2 = (d__1 = x[n0] * xp + y[n0] * yp + z__[n0] * zp, fabs(d__1));
if (store_(&d__2) < 1. - eps * 4.) {
/* All points are collinear if P Left NB->N0 for all */
/* neighbors NB of N0. Search the neighbors of N0. */
/* Note: N1 = NL and LP points to NL. */
L5:
if (xp * (y[n1] * z__[n0] - y[n0] * z__[n1]) - yp * (x[n1] * z__[n0]
- x[n0] * z__[n1]) + zp * (x[n1] * y[n0] - x[n0] * y[n1]) >=
0.) {
lp = lptr[lp];
n1 = (i__1 = list[lp], int64_abs(i__1));
if (n1 == nl) {
goto L14;
}
goto L5;
}
}
/* P is to the right of N1->N0, or P = +/-N0. Set N0 to N1 */
/* and start over. */
n0 = n1;
goto L2;
/* P is between arcs N0->N1 and N0->NF. */
L6:
n2 = nf;
/* P is contained in a wedge defined by geodesics N0-N1 and */
/* N0-N2, where N1 is adjacent to N2. Save N1 and N2 to */
/* test for cycling. */
L7:
n3 = n0;
n1s = n1;
n2s = n2;
/* Top of edge-hopping loop: */
L8:
*b3 = xp * (y[n1] * z__[n2] - y[n2] * z__[n1]) - yp * (x[n1] * z__[n2] -
x[n2] * z__[n1]) + zp * (x[n1] * y[n2] - x[n2] * y[n1]);
if (*b3 < 0.) {
/* Set N4 to the first neighbor of N2 following N1 (the */
/* node opposite N2->N1) unless N1->N2 is a boundary arc. */
lp = lstptr_(&lend[n2], &n1, &list[1], &lptr[1]);
if (list[lp] < 0) {
goto L9;
}
lp = lptr[lp];
n4 = (i__1 = list[lp], int64_abs(i__1));
/* Define a new arc N1->N2 which intersects the geodesic */
/* N0-P. */
if (xp * (y[n0] * z__[n4] - y[n4] * z__[n0]) - yp * (x[n0] * z__[n4]
- x[n4] * z__[n0]) + zp * (x[n0] * y[n4] - x[n4] * y[n0]) <
0.) {
n3 = n2;
n2 = n4;
n1s = n1;
if (n2 != n2s && n2 != n0) {
goto L8;
}
} else {
n3 = n1;
n1 = n4;
n2s = n2;
if (n1 != n1s && n1 != n0) {
goto L8;
}
}
/* The starting node N0 or edge N1-N2 was encountered */
/* again, implying a cycle (infinite loop). Restart */
/* with N0 randomly selected. */
n0 = jrand_(n, &ix, &iy, &iz);
goto L2;
}
/* P is in (N1,N2,N3) unless N0, N1, N2, and P are collinear */
/* or P is close to -N0. */
if (*b3 >= eps) {
/* B3 .NE. 0. */
*b1 = xp * (y[n2] * z__[n3] - y[n3] * z__[n2]) - yp * (x[n2] * z__[n3]
- x[n3] * z__[n2]) + zp * (x[n2] * y[n3] - x[n3] * y[n2]);
*b2 = xp * (y[n3] * z__[n1] - y[n1] * z__[n3]) - yp * (x[n3] * z__[n1]
- x[n1] * z__[n3]) + zp * (x[n3] * y[n1] - x[n1] * y[n3]);
if (*b1 < -tol || *b2 < -tol) {
/* Restart with N0 randomly selected. */
n0 = jrand_(n, &ix, &iy, &iz);
goto L2;
}
} else {
/* B3 = 0 and thus P lies on N1->N2. Compute */
/* B1 = Det(P,N2 X N1,N2) and B2 = Det(P,N1,N2 X N1). */
*b3 = 0.;
s12 = x[n1] * x[n2] + y[n1] * y[n2] + z__[n1] * z__[n2];
ptn1 = xp * x[n1] + yp * y[n1] + zp * z__[n1];
ptn2 = xp * x[n2] + yp * y[n2] + zp * z__[n2];
*b1 = ptn1 - s12 * ptn2;
*b2 = ptn2 - s12 * ptn1;
if (*b1 < -tol || *b2 < -tol) {
/* Restart with N0 randomly selected. */
n0 = jrand_(n, &ix, &iy, &iz);
goto L2;
}
}
/* P is in (N1,N2,N3). */
*i1 = n1;
*i2 = n2;
*i3 = n3;
if (*b1 < 0.) {
*b1 = 0.;
}
if (*b2 < 0.) {
*b2 = 0.;
}
return 0;
/* P Right N1->N2, where N1->N2 is a boundary edge. */
/* Save N1 and N2, and set NL = 0 to indicate that */
/* NL has not yet been found. */
L9:
n1s = n1;
n2s = n2;
nl = 0;
/* Counterclockwise Boundary Traversal: */
L10:
lp = lend[n2];
lp = lptr[lp];
next = list[lp];
if (xp * (y[n2] * z__[next] - y[next] * z__[n2]) - yp * (x[n2] * z__[next]
- x[next] * z__[n2]) + zp * (x[n2] * y[next] - x[next] * y[n2])
>= 0.) {
/* N2 is the rightmost visible node if P Forward N2->N1 */