-
Notifications
You must be signed in to change notification settings - Fork 375
/
Copy pathfitcircle.c
663 lines (580 loc) · 27 KB
/
fitcircle.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*--------------------------------------------------------------------
*
* Copyright (c) 1991-2025 by the GMT Team (https://www.generic-mapping-tools.org/team.html)
* See LICENSE.TXT file for copying and redistribution conditions.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; version 3 or any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* Contact info: www.generic-mapping-tools.org
*--------------------------------------------------------------------*/
/*
* API functions to support the fitcircle application.
*
* Author: Walter H.F. Smith
* Date: 1-JAN-2010
* Version: 6 API
*
* Brief synopsis: reads lon,lat pairs and finds mean position and pole
* of best-fit circle through these points. By default, fit great
* circle. If -S, fit best small circle or force given latitude.
*
*--------------------------------------------------------------------
* Comments:
*
* fitcircle <lonlatfile> -L1|2|3 [-F[<flags>]] [-S[<lat>]]
*
* Read lon,lat pairs from input or file. Find mean position and pole
* of best-fit circle through these points. By default, fit great
* circle. If -S, fit small circle. In this case, fit great circle
* first, and then search for minimum small circle by bisection.
*
* Formally, we want to minimize some norm on the distance between
* each point and the circle, measured perpendicular to the circle.
* For both L1 and L2 norms this is a rather intractable problem.
* (L2 is non-linear, and in L1 it is not clear how to proceed).
* However, some approximations exist which work well and are simple
* to compute. We create a list of x,y,z vectors on the unit sphere,
* representing the original data. To find a great circle, do this:
* For L1:
* Find the Fisher mean of these data, call it mean position.
* Find the (Fisher) mean of all cross-products between data and
* the mean position; call this the pole to the great circle.
* Note that the cross-products are proportional to the distance
* between datum and mean; hence above average gives data far
* from mean larger weight in determining pole. This is
* analogous to fitting line in plane, where data far from
* average abscissa have large leverage in determining slope.
* For L2:
* Create 3 x 3 matrix of sums of products of data vector elements.
* Find eigenvectors and eigenvalues of this matrix.
* Find mean as eigenvector corresponding to max eigenvalue.
* Find pole as eigenvector corresponding to min eigenvalue.
* Eigenvalue-eigenvector decomposition performed by Jacobi's iterative
* method of successive Givens rotations. Trials suggest that
* this converges extremely rapidly (3 sweeps, 9 rotations).
*
* To find a small circle, first find the great circle pole and the mean
* position. Suppose the small circle pole to lie in the plane containing
* the mean and great circle pole, and narrow down its location by bisection.
* Alternatively, specify the latitude of the small circle.
*
*/
/* TO DO: 1) Allow separate fit per line segment
2) New option to only output pole and ave, i.e., not text messages
*/
#include "gmt_dev.h"
#include "longopt/fitcircle_inc.h"
#define THIS_MODULE_CLASSIC_NAME "fitcircle"
#define THIS_MODULE_MODERN_NAME "fitcircle"
#define THIS_MODULE_LIB "core"
#define THIS_MODULE_PURPOSE "Find mean position and great [or small] circle fit to points on sphere"
#define THIS_MODULE_KEYS "<D{,>D},>DF"
#define THIS_MODULE_NEEDS ""
#define THIS_MODULE_OPTIONS "-:>Vabdefghioq" GMT_OPT("H")
struct FITCIRCLE_CTRL { /* All control options for this program (except common args) */
/* active is true if the option has been activated */
struct FITCIRCLE_F { /* -F[f|m|n|s|c] */
bool active;
unsigned int mode; /* f = 1, m = 2, n = 4, s = 8, c = 16 [31] */
} F;
struct FITCIRCLE_L { /* -L[<n>] */
bool active;
unsigned int norm; /* 1, 2, or 3 (both) */
} L;
struct FITCIRCLE_S { /* -S[<lat] */
bool active;
unsigned int mode; /* 0 = find latitude, 1 = use specified latitude */
double lat; /* 0 for great circle */
} S;
};
struct FITCIRCLE_DATA {
double x[3];
};
static void *New_Ctrl (struct GMT_CTRL *GMT) { /* Allocate and initialize a new control structure */
struct FITCIRCLE_CTRL *C;
C = gmt_M_memory (GMT, NULL, 1, struct FITCIRCLE_CTRL);
/* Initialize values whose defaults are not 0/false/NULL */
return (C);
}
static void Free_Ctrl (struct GMT_CTRL *GMT, struct FITCIRCLE_CTRL *C) { /* Deallocate control structure */
if (!C) return;
gmt_M_free (GMT, C);
}
static int usage (struct GMTAPI_CTRL *API, int level) {
const char *name = gmt_show_name_and_purpose (API, THIS_MODULE_LIB, THIS_MODULE_CLASSIC_NAME, THIS_MODULE_PURPOSE);
if (level == GMT_MODULE_PURPOSE) return (GMT_NOERROR);
GMT_Usage (API, 0, "usage: %s [<table>] -L[<norm>] [-F[<flags>]] [-S[<lat>]] [%s] [%s] [%s] [%s] [%s] [%s] [%s] "
"[%s] [%s] [%s] [%s] [%s] [%s]\n",
name, GMT_V_OPT, GMT_a_OPT, GMT_bi_OPT, GMT_di_OPT, GMT_e_OPT, GMT_f_OPT, GMT_g_OPT, GMT_h_OPT, GMT_i_OPT,
GMT_o_OPT, GMT_q_OPT, GMT_colon_OPT, GMT_PAR_OPT);
if (level == GMT_SYNOPSIS) return (GMT_MODULE_SYNOPSIS);
GMT_Message (API, GMT_TIME_NONE, " REQUIRED ARGUMENTS:\n");
GMT_Option (API, "<");
GMT_Usage (API, 1, "\n-L[<norm>]");
GMT_Usage (API, -2, "Specify <norm> as -L1 or -L2; or use -L or -L3 to give both.");
GMT_Message (API, GMT_TIME_NONE, "\n OPTIONAL ARGUMENTS:\n");
GMT_Usage (API, 1, "\n-F[<flags>]");
GMT_Usage (API, -2, "We normally write a mixed numerical/text report. Use -F to return just data columns.");
GMT_Usage (API, -2, "Append the output columns you want as one or more of fmnsc in any order [Default is fmnsc]:");
GMT_Usage (API, -3, "f: Flat Earth mean location.");
GMT_Usage (API, -3, "m: Fisher (L1) or Eigenvalue (L2) mean location.");
GMT_Usage (API, -3, "n: North hemisphere pole location.");
GMT_Usage (API, -3, "s: South hemisphere pole location.");
GMT_Usage (API, -3, "c: Small-circle pole location and colatitude.");
GMT_Usage (API, -2, "If -L3 is used we repeat the output for m|n|s|c (if selected).");
GMT_Usage (API, 1, "\n-S[<lat>]");
GMT_Usage (API, -2, "Attempt to fit a small circle rather than a great circle. "
"Optionally append the oblique latitude <lat> of the small circle you want to fit.");
GMT_Option (API, "V,a,bi,di,e,f,g,h,i,o,q,:,.");
return (GMT_MODULE_USAGE);
}
static int parse (struct GMT_CTRL *GMT, struct FITCIRCLE_CTRL *Ctrl, struct GMT_OPTION *options) {
/* This parses the options provided to fitcircle and sets parameters in CTRL.
* Any GMT common options will override values set previously by other commands.
* It also replaces any file names specified as input or output with the data ID
* returned when registering these sources/destinations with the API.
*/
unsigned int n_errors = 0;
size_t k, s_length;
struct GMT_OPTION *opt = NULL;
struct GMTAPI_CTRL *API = GMT->parent;
for (opt = options; opt; opt = opt->next) {
switch (opt->option) {
case '<': /* Skip input files */
if (GMT_Get_FilePath (API, GMT_IS_DATASET, GMT_IN, GMT_FILE_REMOTE, &(opt->arg))) n_errors++;
break;
/* Processes program-specific parameters */
case 'F': /* Select outputs for data */
n_errors += gmt_M_repeated_module_option (API, Ctrl->F.active);
s_length = strlen (opt->arg);
for (k = 0; k < s_length; k++) {
switch (opt->arg[k]) {
case 'f': Ctrl->F.mode |= 1; break;
case 'm': Ctrl->F.mode |= 2; break;
case 'n': Ctrl->F.mode |= 4; break;
case 's': Ctrl->F.mode |= 8; break;
case 'c': Ctrl->F.mode |= 16; break;
default:
GMT_Report (API, GMT_MSG_ERROR, "Option -F: Bad arg %s. Select any combination from fmnsc\n", opt->arg);
n_errors++;
break;
}
}
break;
case 'L': /* Select norm */
n_errors += gmt_M_repeated_module_option (API, Ctrl->L.active);
Ctrl->L.norm = (opt->arg[0]) ? atoi(opt->arg) : 3;
break;
case 'S': /* Fit small-circle instead [optionally fix the latitude] */
n_errors += gmt_M_repeated_module_option (API, Ctrl->S.active);
if (opt->arg[0]) {
Ctrl->S.lat = atof (opt->arg);
Ctrl->S.mode = 1;
}
break;
default: /* Report bad options */
n_errors += gmt_default_option_error (GMT, opt);
break;
}
}
if (Ctrl->F.active && Ctrl->F.mode == 0) Ctrl->F.mode = (Ctrl->S.active) ? 31 : 15; /* Select all */
n_errors += gmt_M_check_condition (GMT, Ctrl->F.mode & 16 && !Ctrl->S.active, "Option -F: Cannot select c without setting -S\n");
n_errors += gmt_M_check_condition (GMT, Ctrl->L.norm < 1 || Ctrl->L.norm > 3, "Option -L: Choose between 1, 2, or 3\n");
n_errors += gmt_M_check_condition (GMT, Ctrl->S.mode == 1 && fabs (Ctrl->S.lat) > 90.0, "Option -S: Fixed latitude cannot exceed +|- 90\n");
n_errors += gmt_check_binary_io (GMT, 2);
return (n_errors ? GMT_PARSE_ERROR : GMT_NOERROR);
}
GMT_LOCAL double fitcircle_circle_misfit (struct GMT_CTRL *GMT, struct FITCIRCLE_DATA *data, uint64_t ndata, double *pole, int norm, double *work, double *circle_distance) {
/* Find the L(norm) misfit between a small circle through
center with pole pole. Return misfit in radians. */
uint64_t i;
double distance, delta_distance, misfit = 0.0;
/* At first, I thought we could use the center to define
circle_dist = distance between pole and center.
Then sum over data {dist[i] - circle_dist}.
But it turns out that if the data are tightly
curved, so that they are on a small circle
within a few degrees of the pole, then the
center point is not on the small circle, and
we cannot use it. So, we first have to fit
the circle_dist correctly */
if (norm == 1) {
for (i = 0; i < ndata; i++) work[i] = d_acos (gmt_dot3v (GMT, &data[i].x[0], pole));
gmt_sort_array (GMT, work, ndata, GMT_DOUBLE);
*circle_distance = (ndata%2) ? work[ndata/2] : 0.5 * (work[(ndata/2)-1] + work[ndata/2]);
}
else {
*circle_distance = 0.0;
for (i = 0; i < ndata; i++) *circle_distance += d_acos (gmt_dot3v (GMT, &data[i].x[0], pole));
*circle_distance /= ndata;
}
/* Now do each data point */
for (i = 0; i < ndata; i++) {
distance = d_acos (gmt_dot3v (GMT, &data[i].x[0], pole));
delta_distance = fabs (*circle_distance - distance);
misfit += ((norm == 1) ? delta_distance : delta_distance * delta_distance);
}
return (norm == 1) ? misfit : sqrt (misfit);
}
GMT_LOCAL double fitcircle_get_small_circle (struct GMT_CTRL *GMT, struct FITCIRCLE_DATA *data, uint64_t ndata, double *center, double *gcpole, double *scpole, int norm, double *work, int mode, double slat) {
/* Find scpole, the pole to the best-fit small circle,
by L(norm) iterative search along arc between center
and +/- gcpole, the pole to the best fit great circle. */
uint64_t i, j;
double temppole[3], a[3], b[3], oldpole[3];
double trypos, tryneg, afit, bfit, afactor, bfactor, fit, oldfit;
double length_ab, length_aold, length_bold, circle_distance, angle;
/* First find out if solution is between center and gcpole, or center and -gcpole */
gmt_add3v (GMT, center, gcpole, temppole);
gmt_normalize3v (GMT, temppole);
trypos = fitcircle_circle_misfit (GMT, data, ndata, temppole, norm, work, &circle_distance);
gmt_sub3v (GMT, center, gcpole, temppole);
gmt_normalize3v (GMT, temppole);
tryneg = fitcircle_circle_misfit (GMT, data, ndata, temppole, norm, work, &circle_distance);
if (tryneg < trypos) {
gmt_M_cpy3v (a, center);
for (i = 0; i < 3; i++) b[i] = -gcpole[i];
}
else {
gmt_M_cpy3v (a, center);
gmt_M_cpy3v (b, gcpole);
}
/* Now a is at center and b is at pole on correct side. */
if (mode) { /* Want a specified latitude */
sincosd (slat, &afactor, &bfactor);
for (i = 0; i < 3; i++) scpole[i] = (afactor * a[i] + bfactor * b[i]);
gmt_normalize3v (GMT, scpole);
(void)fitcircle_circle_misfit (GMT, data, ndata, scpole, norm, work, &circle_distance);
return (90.0-slat);
}
/* Try to bracket a minimum. Move from b toward a in 1 degree steps */
afit = fitcircle_circle_misfit (GMT, data, ndata, a, norm, work, &circle_distance);
bfit = fitcircle_circle_misfit (GMT, data, ndata, b, norm, work, &circle_distance);
j = 1;
do {
angle = (double)j;
sincosd (angle, &afactor, &bfactor);
for (i = 0; i < 3; i++) temppole[i] = (afactor * a[i] + bfactor * b[i]);
gmt_normalize3v (GMT, temppole);
fit = fitcircle_circle_misfit (GMT, data, ndata, temppole, norm, work, &circle_distance);
j++;
} while (j < 90 && fit > bfit && fit > afit);
if (j == 90) { /* Bad news. There isn't a better fitting pole anywhere. */
GMT_Report (GMT->parent, GMT_MSG_WARNING, "Cannot find small circle fitting better than great circle.\n");
gmt_M_cpy3v (scpole, gcpole);
return (-1.0);
}
/* Get here when temppole points to a minimum bracketed by a and b. */
gmt_M_cpy3v (oldpole, temppole);
oldfit = fit;
/* Now, while not converged, take golden section of wider interval. */
length_aold = d_acos (gmt_dot3v (GMT, a, oldpole));
length_bold = d_acos (gmt_dot3v (GMT, b, oldpole));
do {
if (length_aold > length_bold) { /* Section a_old */
for (i = 0; i < 3; i++) temppole[i] = (0.38197*a[i] + 0.61803*oldpole[i]);
gmt_normalize3v (GMT, temppole);
fit = fitcircle_circle_misfit (GMT, data, ndata, temppole, norm, work, &circle_distance);
if (fit < oldfit) { /* Improvement. b = oldpole, oldpole = temppole */
gmt_M_cpy3v (b, oldpole);
gmt_M_cpy3v (oldpole, temppole);
oldfit = fit;
}
else /* Not improved. a = temppole */
gmt_M_cpy3v (a, temppole);
}
else { /* Section b_old */
for (i = 0; i < 3; i++) temppole[i] = (0.38197*b[i] + 0.61803*oldpole[i]);
gmt_normalize3v (GMT, temppole);
fit = fitcircle_circle_misfit (GMT, data, ndata, temppole, norm, work, &circle_distance);
if (fit < oldfit) { /* Improvement. a = oldpole, oldpole = temppole */
gmt_M_cpy3v (a, oldpole);
gmt_M_cpy3v (oldpole, temppole);
oldfit = fit;
}
else /* Not improved. b = temppole */
gmt_M_cpy3v (b, temppole);
}
length_ab = d_acos (gmt_dot3v (GMT, a, b));
length_aold = d_acos (gmt_dot3v (GMT, a, oldpole));
length_bold = d_acos (gmt_dot3v (GMT, b, oldpole));
} while (length_ab > 0.0001); /* 0.1 milliradian ~ 0.006 degree */
gmt_M_cpy3v (scpole, oldpole);
return (R2D * circle_distance);
}
/* Must free allocated memory before returning */
#define bailout(code) {gmt_M_free_options (mode); return (code);}
#define Return(code) {Free_Ctrl (GMT, Ctrl); gmt_M_free (GMT, data); gmt_end_module (GMT, GMT_cpy); bailout (code);}
EXTERN_MSC int GMT_fitcircle (void *V_API, int mode, void *args) {
bool greenwich = false;
unsigned int imin, imax, nrots, j, k, n, np, n_cols = 0, col = 0;
int error = 0;
uint64_t i, n_data;
size_t n_alloc;
char format[GMT_LEN256] = {""}, record[GMT_LEN256] = {""};
char *type[2] = {"great", "small"}, *way[4] = {"", "L1","L2","L1 and L2"};
double lonsum, latsum, rad, out[18], *work = NULL, *in = NULL;
double meanv[3], cross[3], cross_sum[3], gcpole[3], scpole[3]; /* Extra vectors */
struct GMT_OPTION *options = NULL;
struct GMT_RECORD *In = NULL, *Out = NULL;
struct FITCIRCLE_DATA *data = NULL;
struct FITCIRCLE_CTRL *Ctrl = NULL;
struct GMT_CTRL *GMT = NULL, *GMT_cpy = NULL;
struct GMTAPI_CTRL *API = gmt_get_api_ptr (V_API); /* Cast from void to GMTAPI_CTRL pointer */
/*----------------------- Standard module initialization and parsing ----------------------*/
if (API == NULL) return (GMT_NOT_A_SESSION);
if (mode == GMT_MODULE_PURPOSE) return (usage (API, GMT_MODULE_PURPOSE)); /* Return the purpose of program */
options = GMT_Create_Options (API, mode, args); if (API->error) return (API->error); /* Set or get option list */
if ((error = gmt_report_usage (API, options, 0, usage)) != GMT_NOERROR) bailout (error); /* Give usage if requested */
/* Parse the command-line arguments */
if ((GMT = gmt_init_module (API, THIS_MODULE_LIB, THIS_MODULE_CLASSIC_NAME, THIS_MODULE_KEYS, THIS_MODULE_NEEDS, module_kw, &options, &GMT_cpy)) == NULL) bailout (API->error); /* Save current state */
if (GMT_Parse_Common (API, THIS_MODULE_OPTIONS, options)) Return (API->error);
Ctrl = New_Ctrl (GMT); /* Allocate and initialize a new control structure */
if ((error = parse (GMT, Ctrl, options)) != 0) Return (error);
/*---------------------------- This is the fitcircle main code ----------------------------*/
GMT_Report (API, GMT_MSG_INFORMATION, "Processing input table data\n");
/* Initialize the i/o since we are doing record-by-record reading/writing */
if (GMT_Init_IO (API, GMT_IS_DATASET, GMT_IS_POINT, GMT_IN, GMT_ADD_DEFAULT, 0, options) != GMT_NOERROR) { /* Establishes data input */
Return (API->error);
}
if (GMT_Begin_IO (API, GMT_IS_DATASET, GMT_IN, GMT_HEADER_ON) != GMT_NOERROR) { /* Enables data input and sets access mode */
Return (API->error);
}
n_data = 0; /* Initialize variables */
lonsum = latsum = 0.0;
n_alloc = GMT_INITIAL_MEM_ROW_ALLOC;
data = gmt_M_memory (GMT, NULL, n_alloc, struct FITCIRCLE_DATA);
do { /* Keep returning records until we reach EOF */
if ((In = GMT_Get_Record (API, GMT_READ_DATA, NULL)) == NULL) { /* Read next record, get NULL if special case */
if (gmt_M_rec_is_error (GMT)) { /* Bail if there are any read errors */
Return (GMT_RUNTIME_ERROR);
}
else if (gmt_M_rec_is_eof (GMT)) /* Reached end of file */
break;
continue; /* Go back and read the next record */
}
if (In->data == NULL) {
gmt_quit_bad_record (API, In);
Return (API->error);
}
in = In->data; /* Only need to process numerical part here */
if (in == NULL) {
GMT_Report (API, GMT_MSG_WARNING, "No data columns found; no output can be produced");
gmt_M_free (GMT, data);
Return (GMT_NOERROR);
}
/* Data record to process */
lonsum += in[GMT_X]; latsum += in[GMT_Y];
gmt_geo_to_cart (GMT, in[GMT_Y], in[GMT_X], data[n_data].x, true);
if (++n_data == n_alloc) data = gmt_M_memory (GMT, data, n_alloc <<= 1, struct FITCIRCLE_DATA);
} while (true);
if (GMT_End_IO (API, GMT_IN, 0) != GMT_NOERROR) {
Return (API->error); /* Disables further data input */
}
if (n_data == 0) { /* Blank/empty input files */
GMT_Report (API, GMT_MSG_WARNING, "No data records found; no output produced");
gmt_M_free (GMT, data);
Return (GMT_NOERROR);
}
if (GMT_Init_IO (API, GMT_IS_DATASET, GMT_IS_NONE, GMT_OUT, GMT_ADD_DEFAULT, 0, options) != GMT_NOERROR) { /* Establishes data output */
Return (API->error);
}
if (Ctrl->F.active) { /* Must determine number of output columns for this single record */
if (Ctrl->F.mode & 2) n_cols += 2; /* Requested mean location */
if (Ctrl->F.mode & 4) n_cols += 2; /* Requested N pole location */
if (Ctrl->F.mode & 8) n_cols += 2; /* Requested S pole location */
if (Ctrl->F.mode & 16) n_cols += 3; /* Requested small circle pole location and colatitude */
if (Ctrl->L.norm == 3) n_cols *= 2; /* Selected all this for both norms, so double output size */
if (Ctrl->F.mode & 1) n_cols += 2; /* Requested flat earth mean as well */
if ((error = GMT_Set_Columns (GMT->parent, GMT_OUT, n_cols, GMT_COL_FIX_NO_TEXT)) != GMT_NOERROR) {
Return (error);
}
}
else if ((error = GMT_Set_Columns (GMT->parent, GMT_OUT, 2, GMT_COL_FIX)) != GMT_NOERROR) {
Return (error);
}
if (GMT_Begin_IO (API, GMT_IS_DATASET, GMT_OUT, GMT_HEADER_ON) != GMT_NOERROR) {
Return (API->error); /* Enables data output and sets access mode */
}
if (GMT_Set_Geometry (API, GMT_OUT, GMT_IS_POINT) != GMT_NOERROR) { /* Sets output geometry */
Return (API->error);
}
if (n_data < n_alloc) data = gmt_M_memory (GMT, data, n_data, struct FITCIRCLE_DATA);
if (Ctrl->S.active && Ctrl->L.norm%2) work = gmt_M_memory (GMT, NULL, n_data, double);
GMT_Report (API, GMT_MSG_INFORMATION, "Fitting %s circle using %s norm.\n", type[Ctrl->S.active], way[Ctrl->L.norm]);
lonsum /= n_data; latsum /= n_data;
if (Ctrl->F.active) { /* Return data coordinates */
Out = gmt_new_record (GMT, out, NULL);
if (Ctrl->F.mode & 1) {out[col++] = lonsum; out[col++] = latsum; }
}
else { /* ASCII report */
Out = gmt_new_record (GMT, out, record); /* Place coordinates in data and message in text */
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
snprintf (record, GMT_LEN256, "Points read: %" PRIu64 " Average Position (Flat Earth)", n_data);
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
/* Get Fisher mean in any case, in order to set L2 mean correctly, if needed. */
gmt_M_memset (meanv, 3, double);
for (i = 0; i < n_data; i++) for (j = 0; j < 3; j++) meanv[j] += data[i].x[j];
gmt_normalize3v (GMT, meanv);
if (lonsum > 180.0) greenwich = true;
if (Ctrl->L.norm%2) { /* Want L1 solution */
gmt_cart_to_geo (GMT, &latsum, &lonsum, meanv, true);
if (greenwich && lonsum < 0.0) lonsum += 360.0;
if (Ctrl->F.active) { /* Return data coordinates */
if (Ctrl->F.mode & 2) {out[col++] = lonsum; out[col++] = latsum; }
}
else {
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
snprintf (record, GMT_LEN256, "L1 Average Position (Fisher's Method)");
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
gmt_M_memset (cross_sum, 3, double);
for (i = 0; i < n_data; i++) {
gmt_cross3v (GMT, &data[i].x[0], meanv, cross);
if (cross[2] < 0.0)
gmt_sub3v (GMT, cross_sum, cross, cross_sum);
else
gmt_add3v (GMT, cross_sum, cross, cross_sum);
}
gmt_normalize3v (GMT, cross_sum);
if (Ctrl->S.active) gmt_M_cpy3v (gcpole, cross_sum);
gmt_cart_to_geo (GMT, &latsum, &lonsum, cross_sum, true);
if (greenwich && lonsum < 0.0) lonsum += 360.0;
if (Ctrl->F.active) { /* Return data coordinates */
if (Ctrl->F.mode & 4) {out[col++] = lonsum; out[col++] = latsum; }
}
else {
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
snprintf (record, GMT_LEN256, "L1 N Hemisphere Great Circle Pole (Cross-Averaged)");
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
latsum = -latsum;
lonsum = d_atan2d (-cross_sum[GMT_Y], -cross_sum[GMT_X]);
if (greenwich && lonsum < 0.0) lonsum += 360.0;
if (Ctrl->F.active) { /* Return data coordinates */
if (Ctrl->F.mode & 8) {out[col++] = lonsum; out[col++] = latsum; }
}
else {
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
snprintf (record, GMT_LEN256, "L1 S Hemisphere Great Circle Pole (Cross-Averaged)");
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
if (Ctrl->S.active) { /* Determine small circle pole */
rad = fitcircle_get_small_circle (GMT, data, n_data, meanv, gcpole, scpole, 1, work, Ctrl->S.mode, Ctrl->S.lat);
if (rad >= 0.0) {
gmt_cart_to_geo (GMT, &latsum, &lonsum, scpole, true);
if (greenwich && lonsum < 0.0) lonsum += 360.0;
if (Ctrl->F.active) { /* Return data coordinates */
if (Ctrl->F.mode & 16) {out[col++] = lonsum; out[col++] = latsum; out[col++] = rad; }
}
else {
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
sprintf (format, "L1 Small Circle Pole. Distance from Pole to L1 Small Circle (degrees): %s", GMT->current.setting.format_float_out);
snprintf (record, GMT_LEN256, format, rad);
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
}
else if (Ctrl->F.active) { /* Must now return NaNs to indicate it failed */
if (Ctrl->F.mode & 16) {out[col++] = GMT->session.d_NaN; out[col++] = GMT->session.d_NaN; out[col++] = GMT->session.d_NaN; }
}
}
}
if (Ctrl->L.norm/2) { /* Wanted the L2 solution */
double *a = NULL, *lambda = NULL, *v = NULL, *b = NULL, *z = NULL; /* Matrix stuff */
n = np = 3;
a = gmt_M_memory (GMT, NULL, np*np, double);
lambda = gmt_M_memory (GMT, NULL, np, double);
b = gmt_M_memory (GMT, NULL, np, double);
z = gmt_M_memory (GMT, NULL, np, double);
v = gmt_M_memory (GMT, NULL, np*np, double);
for (i = 0; i < n_data; i++) for (j = 0; j < n; j++) for (k = 0; k < n; k++)
a[j + k*np] += (data[i].x[j]*data[i].x[k]);
if (gmt_jacobi (GMT, a, n, np, lambda, v, b, z, &nrots)) {
GMT_Report (API, GMT_MSG_ERROR, "Eigenvalue routine failed to converge in 50 sweeps.\n");
GMT_Report (API, GMT_MSG_ERROR, "The reported L2 positions might be garbage.\n");
}
GMT_Report (API, GMT_MSG_INFORMATION, "Eigenvalue routine converged in %d rotations.\n", nrots);
imax = 0; imin = 2;
if (d_acos (gmt_dot3v (GMT, v, meanv)) > M_PI_2)
for (i = 0; i < 3; i++) meanv[i] = -v[imax*np+i];
else
for (i = 0; i < 3; i++) meanv[i] = v[imax*np+i];
gmt_cart_to_geo (GMT, &latsum, &lonsum, meanv, true);
if (greenwich && lonsum < 0.0) lonsum += 360.0;
if (Ctrl->F.active) { /* Return data coordinates */
if (Ctrl->F.mode & 2) {out[col++] = lonsum; out[col++] = latsum; }
}
else {
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
snprintf (record, GMT_LEN256, "L2 Average Position (Eigenval Method)");
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
if (v[imin*np+2] < 0.0) /* Eigvec is in S Hemisphere */
for (i = 0; i < 3; i++) gcpole[i] = -v[imin*np+i];
else
for (i = 0; i < 3; i++) gcpole[i] = v[imin*np+i];
gmt_cart_to_geo (GMT, &latsum, &lonsum, gcpole, true);
if (greenwich && lonsum < 0.0) lonsum += 360.0;
if (Ctrl->F.active) { /* Return data coordinates */
if (Ctrl->F.mode & 4) {out[col++] = lonsum; out[col++] = latsum; }
}
else {
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
snprintf (record, GMT_LEN256, "L2 N Hemisphere Great Circle Pole (Eigenval Method)");
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
latsum = -latsum;
lonsum = d_atan2d (-gcpole[GMT_Y], -gcpole[GMT_X]);
if (greenwich && lonsum < 0.0) lonsum += 360.0;
if (Ctrl->F.active) { /* Return data coordinates */
if (Ctrl->F.mode & 8) {out[col++] = lonsum; out[col++] = latsum; }
}
else {
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
snprintf (record, GMT_LEN256, "L2 S Hemisphere Great Circle Pole (Eigenval Method)");
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
gmt_M_free (GMT, v);
gmt_M_free (GMT, z);
gmt_M_free (GMT, b);
gmt_M_free (GMT, lambda);
gmt_M_free (GMT, a);
if (Ctrl->S.active) { /* Want small circle pole */
rad = fitcircle_get_small_circle (GMT, data, n_data, meanv, gcpole, scpole, 2, work, Ctrl->S.mode, Ctrl->S.lat);
if (rad >= 0.0) {
/* True when small circle fits better than great circle */
gmt_cart_to_geo (GMT, &latsum, &lonsum, scpole, true);
if (greenwich && lonsum < 0.0) lonsum += 360.0;
if (Ctrl->F.active) { /* Return data coordinates */
if (Ctrl->F.mode & 16) {out[col++] = lonsum; out[col++] = latsum; out[col++] = rad; }
}
else {
out[GMT_X] = lonsum; out[GMT_Y] = latsum;
snprintf (format, GMT_LEN256, "L2 Small Circle Pole. Distance from Pole to L2 Small Circle (degrees): %s", GMT->current.setting.format_float_out);
snprintf (record, GMT_LEN256, format, rad);
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
}
}
else if (Ctrl->F.active) { /* Must now return NaNs to indicate it failed */
if (Ctrl->F.mode & 16) {out[col++] = GMT->session.d_NaN; out[col++] = GMT->session.d_NaN; out[col++] = GMT->session.d_NaN; }
}
}
}
if (Ctrl->F.active)
GMT_Put_Record (API, GMT_WRITE_DATA, Out);
gmt_M_free (GMT, work);
gmt_M_free (GMT, data);
gmt_M_free (GMT, Out);
if (GMT_End_IO (API, GMT_OUT, 0) != GMT_NOERROR) { /* Disables further data output */
Return (API->error);
}
Return (GMT_NOERROR);
}