-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetworks.py
128 lines (97 loc) · 4.91 KB
/
NeuralNetworks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
class RegressionNetwork(object):
''' Single hidden layered neural network that applies uses the sigmoid activation functions
and returns predictions for regression purposes
'''
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
# Initialize weights
self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5,
(self.input_nodes, self.hidden_nodes))
self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5,
(self.hidden_nodes, self.output_nodes))
# Save learning rate
self.lr = learning_rate
# define activation functions
self.sigmoid = lambda x: 1 / (1 + np.exp(-x))
def train(self, features, targets):
''' Train the network on batch of features and targets.
inputs:
features: 2D array, each row is one data record, each column is a feature
targets: 1D array of target values
'''
n_records = features.shape[0]
# initialize delta change
delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape)
delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape)
for X, y in zip(features, targets):
# forward pass
final_outputs, hidden_outputs = self.feed_forward(X)
# backproagation
delta_weights_i_h, delta_weights_h_o = self.backpropagation(final_outputs, hidden_outputs, X, y,
delta_weights_i_h, delta_weights_h_o)
# updates weights
self.update_weights(delta_weights_i_h, delta_weights_h_o, n_records)
def feed_forward(self, X):
'''
Performs a forward pass
inputs:
X: features batch
'''
### Forward Pass ###
# calculate the hidden layer's output
weights_to_hidden = self.weights_input_to_hidden
hidden_inputs = np.dot(X, weights_to_hidden)
hidden_outputs = self.sigmoid(hidden_inputs)
# calculate the final output
weights_to_output = self.weights_hidden_to_output
final_inputs = np.dot(hidden_outputs, weights_to_output)
final_outputs = final_inputs
return final_outputs, hidden_outputs
def backpropagation(self, final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o):
''' Performs backpropagation and updates weights
inputs:
final_outputs: output from forward pass
y: target (i.e. label) batch
delta_weights_i_h: change in weights from input to hidden layers
delta_weights_h_o: change in weights from hidden to output layers
'''
### Backward pass ###
# calculate the output error (difference between the ground truth and the prediction)
error = y - final_outputs
# calculate the output's error term
output_error_term = error * 1.0
# calculate the hidden layer's contribution to the error
hidden_error = np.dot(
output_error_term, self.weights_hidden_to_output.T) # [:, None])
# calculate the hidden layer's error term
hidden_error_term = hidden_error * \
hidden_outputs * (1 - hidden_outputs)
# calculate the change between the inputs and the hidden layer
delta_weights_i_h += hidden_error_term * X[:, None]
# calculate the change between the hideen and the output
delta_weights_h_o += output_error_term * hidden_outputs[:, None]
return delta_weights_i_h, delta_weights_h_o
def update_weights(self, delta_weights_i_h, delta_weights_h_o, n_records):
''' Update weights on gradient descent step
inputs:
delta_weights_i_h: change in weights from input to hidden layers
delta_weights_h_o: change in weights from hidden to output layers
n_records: number of records
'''
# apply gradient descent step and update weights
self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records
self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records
def run(self, features):
''' Run a forward pass through the network with input features
input:
features: 1D array of feature values
'''
weights_to_hidden = self.weights_input_to_hidden
weights_to_output = self.weights_hidden_to_output
# forward pass a set of data
final_outputs, _ = self.feed_forward(features)
return final_outputs