Skip to content

Commit 4d88cd8

Browse files
authored
Merge pull request #54 from GPUEngineering/feature/53-serialisation-simple
DTensor from text file
2 parents 7d7b63e + 633a3f3 commit 4d88cd8

File tree

5 files changed

+159
-21
lines changed

5 files changed

+159
-21
lines changed

CHANGELOG.md

+10
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,16 @@ All notable changes to this project will be documented in this file.
55
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
66
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
77

8+
<!-- ---------------------
9+
v1.5.0
10+
--------------------- -->
11+
## v1.5.0 - 27-11-2024
12+
13+
### Added
14+
15+
- Created methods for serialising and deserialising `DTensor` objects
16+
17+
818
<!-- ---------------------
919
v1.4.0
1020
--------------------- -->

README.md

+21
Original file line numberDiff line numberDiff line change
@@ -246,6 +246,27 @@ The `DTensor` `B` will be overwritten with the solution.
246246
> overwrite only part of the given `B`, as `B` is a
247247
> (4,1,1)-tensor and the solution is a (3,1,1)-tensor.
248248
249+
### 1.8. Saving and loading tensors
250+
251+
Tensor data can be stored in simple text files which have the following structure
252+
253+
```text
254+
number_of_rows
255+
number_of_columns
256+
number_of_matrices
257+
data (one entry per line)
258+
```
259+
260+
To save a tensor in a file, simply call `DTensor::saveToFile(filename)`.
261+
262+
To load a tensor from a file, the static function `DTensor<T>::parseFromTextFile(filename)` can be used. For example:
263+
264+
```c++
265+
auto z = DTensor<double>::parseFromTextFile("path/to/my.dtensor")
266+
```
267+
268+
If necessary, you can provide a second argument to `parseFromTextFile` to specify the order in which the data are stored (the `StorageMode`).
269+
249270
## 2. Cholesky factorisation and system solution
250271

251272
> [!WARNING]

include/tensor.cuh

+95
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,7 @@
1111
#include <memory>
1212
#include <optional>
1313
#include <cassert>
14+
#include <fstream>
1415

1516
#ifndef TENSOR_CUH
1617
#define TENSOR_CUH
@@ -250,6 +251,19 @@ public:
250251
*/
251252
static DTensor<T> createRandomTensor(size_t numRows, size_t numCols, size_t numMats, T low, T hi);
252253

254+
/**
255+
* Parse data from text file and create an instance of DTensor
256+
*
257+
* This static function reads data from a text file, creates a DTensor and uploads the data to the device.
258+
*
259+
* @param path_to_file path to file as string
260+
* @param mode storage mode (default: StorageMode::defaultMajor)
261+
* @return instance of DTensor
262+
*
263+
* @throws std::invalid_argument if the file is not found
264+
*/
265+
static DTensor<T> parseFromTextFile(std::string path_to_file, StorageMode mode = StorageMode::defaultMajor);
266+
253267
/**
254268
* Constructs a DTensor object.
255269
*/
@@ -487,6 +501,13 @@ public:
487501
*/
488502
void reshape(size_t newNumRows, size_t newNumCols, size_t newNumMats = 1);
489503

504+
/**
505+
* Saves the current instance of DTensor to a (text) file
506+
*
507+
* @param pathToFile
508+
*/
509+
void saveToFile(std::string pathToFile);
510+
490511
/* ------------- OPERATORS ------------- */
491512

492513
DTensor &operator=(const DTensor &other);
@@ -564,6 +585,80 @@ DTensor<T> DTensor<T>::createRandomTensor(size_t numRows, size_t numCols, size_t
564585
throw std::invalid_argument("[createRandomTensor] unsupported type T");
565586
}
566587

588+
589+
template<typename T>
590+
struct data_t {
591+
size_t numRows;
592+
size_t numCols;
593+
size_t numMats;
594+
std::vector<T> data;
595+
};
596+
597+
template<typename T>
598+
data_t<T> vectorFromFile(std::string path_to_file) {
599+
data_t<T> dataStruct;
600+
std::ifstream file;
601+
file.open(path_to_file, std::ios::in);
602+
if (!file.is_open()) { throw std::invalid_argument("the file you provided does not exist"); };
603+
604+
std::string line;
605+
getline(file, line); dataStruct.numRows = atoi(line.c_str());
606+
getline(file, line); dataStruct.numCols = atoi(line.c_str());
607+
getline(file, line); dataStruct.numMats = atoi(line.c_str());
608+
609+
size_t numElements = dataStruct.numRows * dataStruct.numCols * dataStruct.numMats;
610+
std::vector<T> vecDataFromFile(numElements);
611+
612+
size_t i = 0;
613+
while (getline(file, line)) {
614+
if constexpr (std::is_same_v<T, int>) {
615+
vecDataFromFile[i] = atoi(line.c_str());
616+
} else if constexpr (std::is_same_v<T, double>) {
617+
vecDataFromFile[i] = std::stod(line.c_str());
618+
} else if constexpr (std::is_same_v<T, float>) {
619+
vecDataFromFile[i] = std::stof(line.c_str());
620+
} else if constexpr (std::is_same_v<T, long double>) {
621+
vecDataFromFile[i] = std::stold(line.c_str());
622+
} else if constexpr (std::is_same_v<T, long>) {
623+
vecDataFromFile[i] = std::stol(line.c_str());
624+
} else if constexpr (std::is_same_v<T, long long>) {
625+
vecDataFromFile[i] = std::stoll(line.c_str());
626+
} else if constexpr (std::is_same_v<T, unsigned long>) {
627+
vecDataFromFile[i] = std::stoul(line.c_str());
628+
} else if constexpr (std::is_same_v<T, unsigned long long>) {
629+
vecDataFromFile[i] = std::stoull(line.c_str());
630+
} else if constexpr (std::is_same_v<T, size_t>) {
631+
sscanf(line.c_str(), "%zu", &vecDataFromFile[i]);
632+
}
633+
// todo
634+
635+
if (++i == numElements) break;
636+
}
637+
dataStruct.data = vecDataFromFile;
638+
file.close();
639+
return dataStruct;
640+
}
641+
642+
template<typename T>
643+
DTensor<T> DTensor<T>::parseFromTextFile(std::string path_to_file,
644+
StorageMode mode) {
645+
auto parsedData = vectorFromFile<T>(path_to_file);
646+
DTensor<T> tensorFromData(parsedData.data, parsedData.numRows, parsedData.numCols, parsedData.numMats);
647+
return tensorFromData;
648+
}
649+
650+
template<typename T>
651+
void DTensor<T>::saveToFile(std::string pathToFile) {
652+
std::ofstream file(pathToFile);
653+
file << numRows() << std::endl << numCols() << std::endl << numMats() << std::endl;
654+
std::vector<T> myData(numEl()); download(myData);
655+
if constexpr (std::is_floating_point<T>::value) {
656+
int prec = std::numeric_limits<T>::max_digits10 - 1;
657+
file << std::setprecision(prec);
658+
}
659+
for(const T& el : myData) file << el << std::endl;
660+
}
661+
567662
template<typename T>
568663
void DTensor<T>::reshape(size_t newNumRows, size_t newNumCols, size_t newNumMats) {
569664
if (m_numRows == newNumRows && m_numCols == newNumCols && m_numMats == newNumMats) return;

main.cu

+8-21
Original file line numberDiff line numberDiff line change
@@ -1,27 +1,14 @@
1-
#include <random>
2-
#include <algorithm>
3-
#include <iterator>
4-
#include <vector>
5-
#include <iostream>
6-
#include <cublas_v2.h>
71
#include "include/tensor.cuh"
8-
#include <memory>
2+
#include <fstream>
3+
#include <iostream>
4+
#include <string>
5+
#include <vector>
96

10-
#define real_t double
117

128
int main() {
13-
14-
std::vector<real_t> aData = {10.0, 2.0, 3.0,
15-
2.0, 20.0, -1.0,
16-
3.0, -1.0, 30.0};
17-
DTensor<real_t> A(3, 3, 2);
18-
DTensor<real_t> A0(A, 2, 0, 0);
19-
DTensor<real_t> A1(A, 2, 1, 1);
20-
A0.upload(aData);
21-
A1.upload(aData);
22-
CholeskyBatchFactoriser<real_t> chol(A);
23-
chol.factorise();
24-
std::cout << chol.info()(0);
25-
9+
auto z = DTensor<size_t>::parseFromTextFile("../test/data/my.dtensor",
10+
StorageMode::rowMajor);
11+
std::cout << z;
12+
z.saveToFile("hohoho.dtensor");
2613
return 0;
2714
}

test/testTensor.cu

+25
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
#include <gtest/gtest.h>
22
#include "../include/tensor.cuh"
3+
#include <filesystem>
34

45
#define PRECISION_LOW 1e-4
56
#define PRECISION_HIGH 1e-10
@@ -115,6 +116,30 @@ TEST_F(TensorTest, randomTensorCreation) {
115116
randomTensorCreation<int>();
116117
}
117118

119+
/* ---------------------------------------
120+
* Save to file and parse
121+
* --------------------------------------- */
122+
123+
TEMPLATE_WITH_TYPE_T
124+
void parseTensorFromFile() {
125+
size_t nR = 20, nC = 40, nM = 60;
126+
auto r = DTensor<T>::createRandomTensor(nR, nC, nM, -1, 1);
127+
std::string fName = "myTest.dtensor";
128+
r.saveToFile(fName);
129+
auto a = DTensor<T>::parseFromTextFile(fName);
130+
EXPECT_EQ(nR, a.numRows());
131+
EXPECT_EQ(nC, a.numCols());
132+
EXPECT_EQ(nM, a.numMats());
133+
auto diff = a - r;
134+
T err = diff.maxAbs();
135+
EXPECT_LT(err, 2*std::numeric_limits<T>::epsilon());
136+
}
137+
138+
TEST_F(TensorTest, parseTensorFromFile) {
139+
parseTensorFromFile<float>();
140+
parseTensorFromFile<double>();
141+
}
142+
118143
/* ---------------------------------------
119144
* Move constructor
120145
* --------------------------------------- */

0 commit comments

Comments
 (0)