-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
80 lines (61 loc) · 2.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["WANDB_MODE"] = "offline"
from utils import get_data, compute_metrics, tokenize_and_align_labels
from settings import all_labels, data_path, folder
import wandb
from sklearn.model_selection import train_test_split
from transformers import AutoTokenizer, RobertaTokenizerFast, DebertaTokenizerFast
from transformers import DataCollatorForTokenClassification, AutoModelForTokenClassification
from transformers import TrainingArguments, Trainer
import pandas as pd
import torch
MODEL_CHECKPOINTS = ["roberta-base"]
data = pd.read_json(data_path, lines=True)
tags, texts = get_data(data)
id2label = {i: label for i, label in enumerate(all_labels)}
label2id = {v: k for k, v in id2label.items()}
for checkpoint in MODEL_CHECKPOINTS:
print(f"Training {checkpoint}")
torch.cuda.empty_cache()
if "deberta-base" in checkpoint or "deberta-large" in checkpoint:
tokenizer = DebertaTokenizerFast.from_pretrained(checkpoint, add_prefix_space=True)
elif "roberta" in checkpoint:
tokenizer = RobertaTokenizerFast.from_pretrained(checkpoint, add_prefix_space=True)
else:
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=True)
dataset = [tokenize_and_align_labels(tokenizer, tokens, labels) for tokens, labels in zip(texts, tags)]
train, test = train_test_split(dataset, test_size=0.1, random_state=42)
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
model = AutoModelForTokenClassification.from_pretrained(
checkpoint,
id2label=id2label,
label2id=label2id,
)
args = TrainingArguments(
output_dir=f"./output/{checkpoint}",
evaluation_strategy="steps",
save_strategy="no",
learning_rate=2e-5,
num_train_epochs=5,
logging_steps=20,
eval_steps=20,
auto_find_batch_size=True,
)
trainer = Trainer(
model=model,
args=args,
train_dataset=train,
eval_dataset=test,
data_collator=data_collator,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
)
trainer.train()
trainer.save_model()
wandb.finish()
del model
del trainer
del tokenizer
del data_collator