-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdraw_nfilter_curve.py
86 lines (85 loc) · 3.74 KB
/
draw_nfilter_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import matplotlib.pyplot as plt
import os
import pandas as pd
import numpy as np
if __name__ == '__main__':
train_root = './models/'
root = './result/'
res = {
'method': [],
'nfilter': [],
'mean_costs': [],
'encoding_costs': [],
'infer_costs': [],
'sampling_costs': []
}
name_map = {'encoding_costs': 'EncodingCost',
'infer_costs':'InferenceCost',
'sampling_costs': 'SamplingCost'}
exps = [('Duet', 'cup98_mlp_binary_filter{}', 'solid', 'x'), ('Naru', 'Naru_cup98_binary_filter{}', 'dashed', 'o'), ('UAE', 'UAE_cup98_binary_filter{}', 'dashdot', '^')]
nfilters = [2, 4, 8, 16, 32, 64, 100]
cate_nfilters = list(map(lambda x: str(x), nfilters))
width = 0.15
color = ['C0', 'C1', 'C2', 'C3']
textures = ["///" , "\\\\" , "---"]
plt.figure(figsize=(5, 2.5), dpi=300)
# fig, axes = plt.subplots(nrows=1, ncols=3, sharex='col', sharey='row', squeeze=True, layout='constrained')
for i, (method_name, exp_root, linestyle, marker) in enumerate(exps):
methods = []
mean_costs = []
encoding_costs = []
infer_costs = []
sampling_costs = []
for nfilter in nfilters:
exp = exp_root.format(nfilter)
name = exp.split('_')[1]
df = pd.read_csv(os.path.join(root, exp, 'summary.csv'))
mean_cost = df['mean_cost'].values.item()
encoding_cost = df['encoding_cost'].values.item()
infer_cost = df['infer_cost'].values.item()
if method_name in ['Naru', 'UAE']:
sampling_cost = df['sampling_cost'].values.item()
else:
sampling_cost = 0
sampling_costs.append(sampling_cost)
methods.append(method_name)
mean_costs.append(mean_cost)
encoding_costs.append(encoding_cost)
infer_costs.append(infer_cost)
res['method'].extend(methods)
res['mean_costs'].extend(mean_costs)
res['encoding_costs'].extend(encoding_costs)
res['infer_costs'].extend(infer_costs)
res['nfilter'].extend(nfilters)
res['sampling_costs'].extend(sampling_costs)
df = pd.DataFrame(res)
df.to_csv('./result/nfilter.csv', index=None)
metrics = ['encoding_costs', 'infer_costs', 'sampling_costs']
have_labeled = set()
gap = width + 0.05
cmap = plt.get_cmap("Set2")
for i, (method_name, exp_root, linestyle, marker) in enumerate(exps):
method_data = df[df['method'] == method_name]
pos = []
for k, nfilter in enumerate(nfilters):
position = k + gap * (1 - len(exps)) / 2 + i * gap
pos.append(position)
method_nfilter_data = method_data[method_data['nfilter'] == nfilter]
data = method_nfilter_data[metrics].values.flatten()
# arg_index = np.argsort(data)
data_cum = np.cumsum(data)
for j, idx in enumerate(range(len(data))):
if j not in have_labeled:
plt.bar(position, data[idx], bottom=data_cum[idx-1] if idx>0 else 0, zorder=-j, color=cmap(j), width=width, label=name_map[metrics[j]], alpha=0.8, hatch=textures[j])
have_labeled.add(j)
else:
plt.bar(position, data[idx], bottom=data_cum[idx-1] if idx>0 else 0, zorder=-j, color=cmap(j), width=width, alpha=0.8, hatch=textures[j])
plt.plot(pos, method_data['mean_costs'], label=method_name, linestyle=linestyle, color='black', marker=marker, markersize=5)
plt.xlabel('#involved_columns')
plt.ylabel('cost(ms)')
x = np.arange(0, len(cate_nfilters))
plt.xticks(x, cate_nfilters)
plt.legend()
plt.tight_layout()
plt.savefig('./result/nfilter.png')
plt.show()