Skip to content

Latest commit

 

History

History
178 lines (148 loc) · 3.87 KB

File metadata and controls

178 lines (148 loc) · 3.87 KB

中文文档

Description

You are given a binary array nums.

A subarray of an array is good if it contains exactly one element with the value 1.

Return an integer denoting the number of ways to split the array nums into good subarrays. As the number may be too large, return it modulo 109 + 7.

A subarray is a contiguous non-empty sequence of elements within an array.

 

Example 1:

Input: nums = [0,1,0,0,1]
Output: 3
Explanation: There are 3 ways to split nums into good subarrays:
- [0,1] [0,0,1]
- [0,1,0] [0,1]
- [0,1,0,0] [1]

Example 2:

Input: nums = [0,1,0]
Output: 1
Explanation: There is 1 way to split nums into good subarrays:
- [0,1,0]

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 1

Solutions

Python3

class Solution:
    def numberOfGoodSubarraySplits(self, nums: List[int]) -> int:
        mod = 10**9 + 7
        ans, j = 1, -1
        for i, x in enumerate(nums):
            if x == 0:
                continue
            if j > -1:
                ans = ans * (i - j) % mod
            j = i
        return 0 if j == -1 else ans

Java

class Solution {
    public int numberOfGoodSubarraySplits(int[] nums) {
        final int mod = (int) 1e9 + 7;
        int ans = 1, j = -1;
        for (int i = 0; i < nums.length; ++i) {
            if (nums[i] == 0) {
                continue;
            }
            if (j > -1) {
                ans = (int) ((long) ans * (i - j) % mod);
            }
            j = i;
        }
        return j == -1 ? 0 : ans;
    }
}

C++

class Solution {
public:
    int numberOfGoodSubarraySplits(vector<int>& nums) {
        const int mod = 1e9 + 7;
        int ans = 1, j = -1;
        for (int i = 0; i < nums.size(); ++i) {
            if (nums[i] == 0) {
                continue;
            }
            if (j > -1) {
                ans = 1LL * ans * (i - j) % mod;
            }
            j = i;
        }
        return j == -1 ? 0 : ans;
    }
};

Go

func numberOfGoodSubarraySplits(nums []int) int {
	const mod int = 1e9 + 7
	ans, j := 1, -1
	for i, x := range nums {
		if x == 0 {
			continue
		}
		if j > -1 {
			ans = ans * (i - j) % mod
		}
		j = i
	}
	if j == -1 {
		return 0
	}
	return ans
}

TypeScript

function numberOfGoodSubarraySplits(nums: number[]): number {
    let ans = 1;
    let j = -1;
    const mod = 10 ** 9 + 7;
    const n = nums.length;
    for (let i = 0; i < n; ++i) {
        if (nums[i] === 0) {
            continue;
        }
        if (j > -1) {
            ans = (ans * (i - j)) % mod;
        }
        j = i;
    }
    return j === -1 ? 0 : ans;
}

C#

public class Solution {
    public int NumberOfGoodSubarraySplits(int[] nums) {
        long ans = 1, j = -1;
        int mod = 1000000007;
        int n = nums.Length;
        for (int i = 0; i < n; ++i) {
            if (nums[i] == 0) {
                continue;
            }
            if (j > -1) {
                ans = ans * (i - j) % mod;
            }
            j = i;
        }
        return j == -1 ? 0 : (int) ans;
    }
}

...