-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcp_flatten.py
634 lines (566 loc) · 23.4 KB
/
cp_flatten.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
"""
CensoredPlanetFlatten and helper classes to flatten raw Censored Planet data.
"""
import json
import tarfile
import re
import logging
import geoip2.database
import geoip2.errors
import numpy as np
import pickle
from enum import Enum
from torch.utils.data.dataset import T_co
from blockpage import BlockpageMatcher
from dateutil.parser import isoparse
from fairseq.models.roberta import XLMRModel
from io import BufferedReader
from torch.utils.data import IterableDataset
from typing import Any, Callable, Dict, Iterator, Tuple, TypedDict, Union, List
from urlextract import URLExtract
from webdataset import ShardList, Shorthands, tariterators, url_opener
class QuackConstants(Enum):
"""
An Enum to contain constants used in this project.
"""
# For Hyperquack v1
# echo/discard domain and url content
SENT_PATTERN = "GET (.*) HTTP/1.1\r\nHost: (.*)\r\n" # type: str
# For Hyperquack v1
CONTROL_URLS = [
'example5718349450314.com', # echo/discard
'rtyutgyhefdafioasfjhjhi.com' # HTTP/S
] # type: List[str]
# Re-mapped XLMR tokens in use to a smaller vocab:
VOCAB = 6813
# XLM-R uses 1 as the token for <pad>.
XLMR_PAD = 1 # type: int
# All data falls after July 1, 2021:
TIME_FLOOR = isoparse('2021-07-01').timestamp() # type: float
# All data falls within a single year:
TIME_CEILING = isoparse('2022-07-01').timestamp() # type: float
class Row(TypedDict):
"""
A data structure for a single flattened row of CP data.
If data is labeled:
censorship: 1 => definitely, 0 => unknown, -1 => definitely not
If data is unlabeled, censorship defaults to 0.
"""
ip: str
location: str
domain: str
anomaly: bool
controls_failed: bool
stateful_block: bool
success: bool
error: str
start_time: float
end_time: float
censored: int
received_tls_version: int
received_tls_cipher_suite: int
received_tls_cert: str
sent: str
received_status: str
received_headers: str
received_body: str
class TokenizedQuackData(TypedDict):
"""
A data structure to hold the flattened data.
"""
metadata: dict
static_size: np.ndarray
variable_text: np.ndarray
class CensoredPlanetFlatten(IterableDataset, Shorthands):
"""
Although (Webdataset)[https://webdataset.github.io/webdataset/] may be able to handle all our pipeline needs,
my intention here is to take in the Censored Planet Quack data and pre-preprocess it into Pytorch Tensors.
The following are adapted from https://github.com/censoredplanet/censoredplanet-analysis/blob/master/pipeline/metadata/flatten.py
- `process_hyperquack_v1`
- `process_hyperquack_v2`
- `extract_domain_from_sent_field`
"""
def __init__(self,
urls: Union[str, List[str]],
vocab_path: str = '',
compare: bool = False,
labeled: bool = False,
anomalies: bool = False,
raw: bool = False
) -> None:
"""
Parameters
----------
urls: Union[str, List[str]]
Path or paths to pass to webdataset.dataset.ShardList. Points to Censored Planet .tar data files.
vocab_path: str
Path to a .pyc file which holds a dictionary that maps an index sequence with tokens used from
fairseq.models.roberta.model_xlmr.XLMRModel when flattening data.
compare: bool
Should data be compared with Censored Planet blockpage signatures?
labeled: bool
Should only data successfully precessed by blockpage matcher be returned?
anomalies: bool
Should only data marked by Censored Planet as an anomaly be processed?
raw: bool
Should the raw row be returned without processing into vectors?
"""
super().__init__()
assert (
urls is not None
), "Must supply a url as a string or list of strings"
self.__shards = ShardList(urls)
self.__blockpage_matcher = BlockpageMatcher()
self.__labeled = labeled
self.__compare = labeled or compare
self.__anomalies = anomalies
self.__raw = raw
if not self.__raw:
# Bring in the MMDB free database.
self.__ip2geo = geoip2.database.Reader('./mmdb/country.mmdb')
# Bring in the pretrained XLMR model.
self.__xlmr = XLMRModel.from_pretrained('/data/xlmr.large', checkpoint_file='model.pt')
self.__xlmr.eval()
self.__vocab_path = vocab_path
try:
with open(vocab_path, 'rb') as retrieved_dict:
self.__vocab = pickle.load(retrieved_dict)
except OSError:
self.__vocab = dict()
self.__vocab_next = len(self.__vocab)
def __getitem__(self, index) -> T_co:
"""
Required by the parent of IterableDataset but not useful in this context, and not implemented by any of the
Webdataset implementations of IterableDataset.
"""
pass
def __iter__(self) -> Iterator[Union[TokenizedQuackData, Row]]:
"""
Iterates the data in the .tar files.
Returns
-------
Union[Iterator[TokenizedQuackData], Iterator[Row]]
A dictionary (TypedDict) containing flattened data for a single item or if self.__raw is true, the
unprocessed (Row) dictionary of row data is returned.
"""
for quack_file in url_opener(self.__shards):
for filestream in self.__quack_file_expander(quack_file):
file_name, connection = filestream
iterate_lines = True
while iterate_lines:
try:
# Get the next line.
line = connection.readline()
if line == b'':
# End of file.
raise StopIteration
# Flatten the line.
try:
scan = json.loads(line.decode('utf-8', errors='replace'))
except json.decoder.JSONDecodeError as e:
logging.warning(f'JSONDecodeError: {e}\nFilename: {file_name}\n')
continue
if 'Server' in scan:
try:
blocked = scan['Blocked']
except KeyError:
blocked = False
if self.__anomalies and not blocked:
continue
yield from self.__process_hyperquack_v1(scan)
elif 'vp' in scan:
try:
blocked = scan['anomaly']
except KeyError:
blocked = False
if self.__anomalies and not blocked:
continue
yield from self.__process_hyperquack_v2(scan)
else:
print(f"Line skipped with unknown hyperquack format:\n{scan}")
except StopIteration:
iterate_lines = False
except Exception as exn:
tariterators.reraise_exception(exn)
if not self.__raw:
# Save the xlmr -> vocab token mapping:
with open(self.__vocab_path, 'wb') as stored_dict:
pickle.dump(self.__vocab, stored_dict)
print(f"All items flattened. Re-mapped vocabulary has {len(self.__vocab)} items.")
# Utility iterators to keep __iter__ readable.
def __quack_tar_file_iterator(self, file_obj: BufferedReader,
handler: Callable = tariterators.reraise_exception) -> Tuple[str, object]:
"""
An adaptation of webdataset.tariterators.tar_file_expander that returns a stream to a file in which we are
interested rather than reading the entire file.
Parameters
----------
file_obj : BufferedReader
A tarfile stream to the tar file.
handler: Callable
The exception handler.
Yields
-------
tuple
A tuple with 2 members:
- str: filename
- tarfile._Stream: An internal class used by the tarfile module
"""
stream = tarfile.open(fileobj=file_obj, mode="r|*")
for tarinfo in stream:
try:
if not tarinfo.isreg():
continue
file_name = tarinfo.name
if file_name is None:
continue
if not 'results.json' in file_name:
# Only interested in results.json
continue
yield file_name, stream.extractfile(tarinfo)
except Exception as exn:
if handler(exn):
continue
else:
break
del stream
def __quack_file_expander(self, data: Dict[str, BufferedReader],
handler: Callable = tariterators.reraise_exception) -> Iterator[Tuple[str, object]]:
"""
An adaptation of webdataset.tariterators.tar_file_expander that calls our quack_tar_file_iterator
instead.
Parameters
----------
data : dict
A dictionary with stream and filename keys.
handler: Callable
The exception handler.
Yields
-------
tuple
A tuple with 2 members:
- str: filename
- tarfile._Stream: An internal class used by the tarfile module
"""
try:
assert "stream" in data
for sample in self.__quack_tar_file_iterator(data["stream"]):
assert isinstance(sample, tuple) and len(sample) == 2
yield sample
except Exception as exn:
handler(exn)
def __process_hyperquack_v1(self, scan: Dict) -> Union[Iterator[TokenizedQuackData], Iterator[Row]]:
"""
Process a line of Echo/Discard/HTTP/S data in HyperQuack V1 format.
Parameters
----------
scan: dict
A loaded json object containing the parsed content of the line
Yields
-------
Union[Iterator[TokenizedQuackData], Iterator[Row]]
A dictionary (TypedDict) containing flattened data for a single item or if self.__raw is true, the
unprocessed (Row) dictionary of row data
References
----------
https://censoredplanet.readthedocs.io/en/latest/hyperquackv1.html
"""
for index, result in enumerate(scan.get('Results', [])):
domain = self.__extract_domain_from_sent_field(result['Sent'])
is_control = domain in QuackConstants.CONTROL_URLS.value
# Due to a bug the sent field sometimes isn't populated
# when the measurement failed due to network timeout.
if not domain:
# Control measurements come at the end, and are not counted as retries.
is_control = index > scan['Retries']
if not is_control:
domain = scan['Keyword']
if is_control:
# We are not interested in control queries.
continue
error = ''
if 'Error' in result:
error = result['Error']
received = result.get('Received', '')
try:
if self.__anomalies and result['Success']:
# Not an anomaly.
continue
received_fields = self.__parse_received_data(received)
# Calculate censorship if required
matches_blockpage = 0
if self.__compare and result['Success'] and not scan['Blocked']:
matches_blockpage = -1
elif self.__compare and len(received_fields['received_body']) > 0:
matches_blockpage = self.__blockpage_match(received_fields['received_body'])
# If we only want labeled data and censorship is still undetermined, continue to the next row.
if matches_blockpage == 0 and self.__labeled:
continue
except KeyError:
# There's something out of spec with this item.
continue
# Process time strings into a unix timestamp.
start = isoparse(result['StartTime'])
end = isoparse(result['EndTime'])
# Create row data.
row = Row(
ip=scan['Server'],
location= '',
domain=domain,
anomaly=scan['Blocked'],
censored=matches_blockpage,
controls_failed=scan['FailSanity'],
stateful_block=scan['StatefulBlock'],
success=result['Success'],
error=error,
start_time=start.timestamp(),
end_time=end.timestamp(),
sent=result['Sent'],
received_tls_version=received_fields['received_tls_version'],
received_tls_cipher_suite=received_fields['received_tls_cipher_suite'],
received_tls_cert=received_fields['received_tls_cert'],
received_status=received_fields['received_status'],
received_headers=received_fields['received_headers'],
received_body=received_fields['received_body']
)
if self.__raw:
result = row
else:
result = self.__process_row(row)
yield result
def __process_hyperquack_v2(self, scan: Dict) -> Union[Iterator[TokenizedQuackData], Iterator[Row]]:
"""
Process a line of Echo/Discard/HTTP/S data in HyperQuack V2 format.
Parameters
----------
scan: dict
A loaded json object containing the parsed content of the line
Yields
-------
Union[Iterator[TokenizedQuackData], Iterator[Row]]
A dictionary (TypedDict) containing flattened data for a single item or if self.__raw is true, the
unprocessed (Row) dictionary of row data
References
----------
https://censoredplanet.readthedocs.io/en/latest/hyperquackv2.html
"""
controls_failed = False
if 'controls_failed' in scan:
controls_failed = scan['controls_failed'] == True
for response in scan.get('response', []):
if 'control_url' in response:
# We are not interested in control queries.
continue
error = ''
if 'error' in response:
error = response['error']
received = response.get('response', '')
try:
if self.__anomalies and response['matches_template']:
# Not an anomaly.
continue
received_fields = self.__parse_received_data(received)
matches_blockpage = 0
# Calculate censorship if required
if self.__compare:
if response['matches_template'] and not scan['anomaly']:
matches_blockpage = -1
elif len(received_fields['received_body']) > 0:
matches_blockpage = self.__blockpage_match(received_fields['received_body'])
# If we only want labeled data and censorship is still undetermined, continue to the next row.
if matches_blockpage == 0 and self.__labeled:
continue
except KeyError:
# There's something out of spec with this item.
continue
# Process time strings into a unix timestamp.
start = isoparse(response['start_time'])
end = isoparse(response['end_time'])
# Create row data.
row = Row(
ip=scan['vp'],
location=scan['location']['country_name'],
domain=scan['test_url'],
anomaly=scan['anomaly'],
censored=matches_blockpage,
controls_failed=controls_failed,
stateful_block=scan['stateful_block'],
success=response['matches_template'],
error=error,
start_time=start.timestamp(),
end_time=end.timestamp(),
sent=scan['test_url'],
received_tls_version=received_fields['received_tls_version'],
received_tls_cipher_suite=received_fields['received_tls_cipher_suite'],
received_tls_cert=received_fields['received_tls_cert'],
received_status=received_fields['received_status'],
received_headers=received_fields['received_headers'],
received_body=received_fields['received_body']
)
if self.__raw:
result = row
else:
result = self.__process_row(row)
yield result
def __process_row(self, row: Row) -> TokenizedQuackData:
"""
Transforms flattened data in a Row into a torch.Tensor with metadata.
Parameters
----------
row: Row
Returns
-------
TokenizedQuackData
"""
if not len(row['location']):
try:
lookup = self.__ip2geo.country(row['ip'])
country = lookup.country.name
except geoip2.errors.AddressNotFoundError:
country = None
else:
country = row['location']
metadata = {
'domain': row['domain'],
'ip': row['ip'],
'location': country,
'timestamp': row['start_time'],
'censored': row['censored']
}
# Row keys with static length data.
static_keys = ('success', 'anomaly', 'controls_failed', 'stateful_block', 'start_time', 'end_time', 'received_tls_version', 'received_tls_cipher_suite', 'received_tls_cert')
# Row keys with variable length (text) data.
# #> Skipping 'received_tls_cert' for now.
text_keys = ('sent', 'received_status', 'received_headers', 'received_body')
static_dimension = []
# First split the ip and cast to int.
for segment in row['ip'].split('.'):
static_dimension.append(int(segment))
for key in static_keys:
static_dimension.append(row[key])
concatenated = ''
# Concatenate the strings.
for key in text_keys:
concatenated += row[key]
encoded = self.__xlmr.encode(concatenated).numpy() # Type: np.ndarray
# We keep a map of xlmr tokens actually used to reduce the scale of our models.
mapped = np.zeros(encoded.shape, dtype=encoded.dtype)
for index, value in enumerate(encoded):
try:
token = self.__vocab[value]
except KeyError:
token = self.__vocab_next
self.__vocab[value] = self.__vocab_next
self.__vocab_next += 1
mapped[index] = token
meta_tensor = TokenizedQuackData(
metadata=metadata,
static_size=np.array(static_dimension),
variable_text=mapped
)
return meta_tensor
def __extract_domain_from_sent_field(self, sent: str) -> str:
"""
Get the url out of a 'sent' field in a measurement.
Parameters
----------
sent: str
Examples:
* An empty string ("") meaning the sent packet wasn't recorded.
* "GET / HTTP/1.1\r\nHost: example5718349450314.com\r\n" (echo/discard)
* "GET www.bbc.co.uk HTTP/1.1\r\nHost: /content.html\r\n" (discard error) or just "www.apple.com" (HTTP/S)
Returns
-------
str
Just the url, if found.
"""
extractor = URLExtract()
extractor.update_when_older(7) # updates known TLD when list is older that 7 days
if sent == '':
return sent
match = re.search(QuackConstants.SENT_PATTERN.value, sent)
if match:
path = match.group(1)
domain = match.group(2)
# This is a bug where the domain and path were reversed in content sent.
# We do our best to reconstruct the intended url
# by swapping them to their intended position
if extractor.has_urls(path):
domain, path = path, domain
if path == '/':
return domain
return domain + path
if ' ' not in sent:
return sent
raise Exception(f"unknown sent field format: {sent}")
def __parse_received_data(self, received: Union[str, Dict[str, Any]]) -> Dict:
"""
Processes data found in the "received" key of a row.
Parameters
----------
received: Union[str, dict[str, Any]]
A dict parsed from json data, or a str
Returns
-------
dict
"""
data = {
'received_status': '',
'received_body': '',
'received_headers': '',
'received_tls_version': 0,
'received_tls_cipher_suite': 0,
'received_tls_cert': 0,
}
if isinstance(received, str):
match = re.search(r'^HTTP/[\d.]+\s(\d+)', received)
if match:
data['received_status'] = match.group(1)
data['received_body'] = received
return data
if 'status_line' in received:
data['received_status'] = received['status_line']
if 'body' in received:
data['received_body'] = received['body']
if 'headers' in received:
for key, values in received['headers'].items():
for value in values:
data['received_headers'] += key + ': ' + value + ' '
# hyperquack v1 TLS format
tls = received.get('tls', None)
if tls:
data['received_tls_version'] = tls['version']
data['received_tls_cipher_suite'] = tls['cipher_suite']
data['received_tls_cert'] = tls['cert']
# hyperquack v2 TLS format
if 'TlsVersion' in received:
data['received_tls_version'] = received['TlsVersion']
data['received_tls_cipher_suite'] = received['CipherSuite']
data['received_tls_cert'] = received['Certificate']
return data
def __blockpage_match(self, body) -> int:
"""
Uses the regular expression matcher provide by Censored Planet.
Parameters
----------
body: str
An html body string
Returns
-------
int
Returns -1, 0 or 1.
* 1 if a match to a known block page.
* -1 if a match to a known false positive page.
* 0 if no match.
"""
blockpage, signature = self.__blockpage_matcher.match_page(body)
# The matcher returns True, False or None.
# True if a match to a known block page.
# False if a match to a known false positive page.
# None no match at all.
# Translating to 3 integer values for type consistency.
if blockpage is None:
return 0
if blockpage:
return 1
return -1