-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTFUtils.py
54 lines (40 loc) · 1.5 KB
/
TFUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tensorflow as tf
# Utility packages for lazy me
class TFUtils:
def __init__(self):
return
# Xavier initialization
@staticmethod
def xavier_init(shape, name='', uniform=True):
num_input = sum(shape[:-1])
num_output = shape[-1]
if uniform:
init_range = tf.sqrt(6.0 / (num_input + num_output))
init_value = tf.random_uniform_initializer(-init_range, init_range)
else:
stddev = tf.sqrt(3.0 / (num_input + num_output))
init_value = tf.truncated_normal_initializer(stddev=stddev)
return tf.get_variable(name, shape=shape, initializer=init_value)
@staticmethod
def conv2d(X, W, strides=None, padding='SAME'):
if strides is None:
strides = [1, 1, 1, 1]
return tf.nn.conv2d(X, W, strides=strides, padding=padding)
@staticmethod
def max_pool(X, ksize=None, strides=None, padding='SAME'):
if ksize is None:
ksize = [1, 2, 2, 1]
if strides is None:
strides = [1, 2, 2, 1]
return tf.nn.max_pool(X, ksize=ksize, strides=strides, padding=padding)
@staticmethod
def build_cnn_layer(X, W, p_dropout=1., pool=True, reshape=None):
L = tf.nn.relu(TFUtils.conv2d(X, W))
if pool is True:
L = TFUtils.max_pool(L)
if reshape is not None:
L = tf.reshape(L, reshape)
if p_dropout == 1:
return L
else:
return tf.nn.dropout(L, p_dropout)