-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
150 lines (120 loc) · 4.54 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import matplotlib.pyplot as plt
# helper function for data visualization
import numpy as np
import torch
import torchmetrics
import cv2
import torch.nn as nn
from scipy import ndimage
from segmentation_models_pytorch.utils import base,functional
from segmentation_models_pytorch.base.modules import Activation
from segmentation_models_pytorch.utils.functional import _take_channels, _threshold
from sklearn.metrics import roc_auc_score
from torch.nn import functional as F
def visualize(**images):
"""PLot images in one row."""
n = len(images)
plt.figure(figsize=(16, 5))
for i, (name, image) in enumerate(images.items()):
plt.subplot(1, n, i + 1)
plt.xticks([])
plt.yticks([])
plt.title(' '.join(name.split('_')).title())
plt.imshow(image)
plt.show()
def roc_auc_score(pr, gt, threshold=0.5, ignore_channels=None):
"""Calculate auc score between ground truth and prediction
Args:
pr (torch.Tensor): predicted tensor
gt (torch.Tensor): ground truth tensor
eps (float): epsilon to avoid zero division
threshold: threshold for outputs binarization
Returns:
float: precision score
"""
pr = _threshold(pr, threshold=threshold)
pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
auroc = torchmetrics.AUROC(average='macro', num_classes=1)
auroc(pr.view(-1), gt.type(torch.uint8).view(-1))
auc = auroc.compute()
return auc
class AUC(base.Metric):
def __init__(self, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return roc_auc_score(
y_pr, y_gt,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
def specificity(pr, gt, eps=1e-7, threshold=None, ignore_channels=None):
"""Calculate specificity score between ground truth and prediction
Args:
pr (torch.Tensor): predicted tensor
gt (torch.Tensor): ground truth tensor
eps (float): epsilon to avoid zero division
threshold: threshold for outputs binarization
Returns:
float: specificity score
"""
pr = _threshold(pr, threshold=threshold)
pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
tp = torch.sum(gt * pr)
fp = torch.sum(pr) - tp
fn = torch.sum(gt) - tp
tn = gt.view(-1).shape[0] - tp - fp -fn
score = (tn + eps) / (tn + fp + eps)
return score
class Specificity(base.Metric):
def __init__(self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return specificity(
y_pr, y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
def dice(pr, gt, eps=1e-7, threshold=0.5, ignore_channels=None):
pr = _threshold(pr, threshold=threshold)
pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
intersection = torch.sum(gt * pr)
dice_eff = ((2. * intersection) + eps) / (torch.sum(gt) + torch.sum(pr) + eps)
return dice_eff
class Dice(base.Metric):
def __init__(self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return dice(
y_pr, y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class focal_loss(nn.Module):
def __init__(self, weight=None, reduction='mean', gamma=1, eps=1e-7):
super(focal_loss, self).__init__()
self.gamma = gamma
self.eps = eps
self.ce = torch.nn.CrossEntropyLoss(weight=weight, reduction=reduction)
def forward(self, input, target):
logp = self.ce(input, target)
p = torch.exp(-logp)
loss = (1 - p) ** self.gamma * logp
return loss.mean()
class FocalLoss(focal_loss, base.Loss):
pass