forked from andrewhodel/gcode-optimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_utils.py
724 lines (570 loc) · 22.6 KB
/
graph_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
import networkx as nx
import matplotlib.pyplot as plt
def get_odd_degree_count(graph):
degrees = graph.degree()
odd_degree_count = 0
for node, degree in degrees:
if degree % 2 == 1:
odd_degree_count += 1
return odd_degree_count
def get_degree_one_count(graph):
degrees = graph.degree()
degree_one_count = 0
for node, degree in degrees:
if degree == 1:
degree_one_count += 1
return degree_one_count
def graph_from_path(path):
graph = nx.DiGraph()
# Create an edge list - each edge is a pair of coordinates that are adjacent in the path
edge_list = []
for i in range(len(path) - 1):
edge_list.append((path[i], path[i + 1]))
# Remove self-loops
edge_list = [edge for edge in edge_list if edge[0] != edge[1]]
graph.add_nodes_from(path)
graph.add_edges_from(edge_list)
# Make graph undirected
graph = graph.to_undirected()
return graph
def get_connection_path(node, graph):
# Plot graph
# nx.draw(graph, with_labels=True)
# plt.show()
# breakpoint()
assert graph.degree(node) == 1
# Construct the path from the node to a node with degree >2
path = [node]
# Get the current node
# The node must have degree 1
neighbors = [neighbor for neighbor in graph.neighbors(node)]
current_node = neighbors[0]
while graph.degree(current_node) == 2:
# Add the current node to the path
path.append(current_node)
# Get the neighbor that is not the previous node
for neighbor in graph.neighbors(current_node):
if neighbor != path[-2]:
break
current_node = neighbor
# Add the last node to the path
path.append(current_node)
path = graph_from_path(path)
path.graph["entry_point"] = current_node
return path
def get_eulerian_path(graph):
# Check if the graph has an Eulerian path
odd_degree_count = get_odd_degree_count(graph)
if odd_degree_count == 0:
return graph
# If zero, graph is a Eulerian tour
# If non-zero, we update nodes to make it a Eulerian tour
# If zero, means we have created Eulerian tour
while odd_degree_count != 2 and odd_degree_count != 0:
# Find a node with degree == 1
for node, degree in graph.degree():
if degree == 1:
break
# Get the connection path
# This path defines the path from the node with degree 1 to a node with degree >2
connection_path = get_connection_path(node, graph)
# We need to remove the nodes in the connection path from the original graph
# Replace the connection path with a node
# First, let's get the neighbor list of "entry_point"
# Remove the neighbor from connection path
neighbors = [
neighbor
for neighbor in graph.neighbors(
connection_path.graph.get("entry_point", None)
)
]
for i, neighbor in enumerate(neighbors):
if neighbor in connection_path.nodes:
neighbors.pop(i)
break
# Next, delete all the nodes in the connection path from the original graph
graph.remove_nodes_from(connection_path.nodes)
# Add the new node
graph.add_node(connection_path)
# Create an edge list between the new node and the neighbors
edge_list = []
for neighbor in neighbors:
edge_list.append((connection_path, neighbor))
graph.add_edges_from(edge_list)
# Get the new odd degree count
# Plot the graph
# nx.draw(graph, with_labels=True)
# plt.show()
odd_degree_count = get_odd_degree_count(graph)
return graph
def graph_contains(graph, node):
for n in graph.nodes:
if n == node:
return True
elif isinstance(n, nx.Graph):
if graph_contains(n, node):
return True
return False
def graph_where(graph, node):
for i, n in enumerate(graph.nodes):
if n == node:
return n
elif isinstance(n, nx.Graph):
if graph_contains(n, node):
return n
return None
def get_coords(node):
# If the node is a tuple, return the tuple
if isinstance(node, tuple):
return node
# If the node is a graph, return the entry point
if isinstance(node, nx.Graph):
# Get the entry point
return get_coords(node.graph.get("entry_point", None))
def distance(node1, node2, attributes):
node_1_pos = get_coords(node1)
node_2_pos = get_coords(node2)
return abs(node_1_pos[0] - node_2_pos[0]) + abs(node_1_pos[1] - node_2_pos[1])
def flatten_path(path):
for node in path["main"]:
# If the node is a graph, recursively flatten
if isinstance(node, nx.Graph):
flat_path.extend(flatten_path(path[node]))
else:
flat_path.append(node)
return flat_path
def add_subpath_to_path(path, node, sub_path):
if node not in path:
path[node] = sub_path
# Do nothing otherwise
return path
def get_traversing_path(graph, start_node, end_node):
# Create a new graph if path is None
path = {"main": []}
# Get keys for the start and end nodes
# These could point to a node or a graph
start_node_key = graph_where(graph, start_node)
end_node_key = graph_where(graph, end_node)
used_edges
# Check if start_node key is a graph
if isinstance(start_node_key, nx.Graph):
# Find the path from the start node to the entry point
start_path = get_traversing_path(
start_node_key, start_node, start_node_key.graph["entry_point"]
)
path = add_subpath_to_path(path, start_node_key, start_path)
else:
path["main"].append(start_node_key)
# Plot the graph
# nx.draw(graph, with_labels=True)
# plt.show()
# Check if the start node has multiple neighbors
neighbors = [neighbor for neighbor in graph.neighbors(start_node_key)]
if len(neighbors) == 0:
return path # No neighbors, return the path
if len(neighbors) > 1:
# Get shortest path from start node to end node
sub_path = nx.shortest_path(graph, start_node_key, end_node_key)[0]
# Select neighbor in not in sub_path
for neighbor in neighbors:
if neighbor not in sub_path:
break
else:
neighbor = neighbors[0]
current_node = neighbor
while current_node != end_node_key:
# If its a graph
if isinstance(current_node, nx.Graph):
# If it's not in main, we need to recursively traverse
# Also, do traverse the end node early
if not current_node in path["main"] and current_node != end_node_key:
sub_path = get_traversing_path(
current_node,
current_node.graph["entry_point"],
current_node.graph["entry_point"],
)
path = add_subpath_to_path(path, current_node, sub_path)
# If it is in main, simply add the entry point and continue
else:
path["main"].append(current_node.graph["entry_point"])
else:
path["main"].append(current_node)
# Get the neighbors of the start node key
neighbors = [neighbor for neighbor in graph.neighbors(current_node)]
# We've reached the end of a path, start walking backwards
if len(neighbors) == 1:
current_node = neighbors[0]
continue
# Get the neighbor that is not the previous node
for neighbor in neighbors:
if neighbor != path["main"][-2]:
break
current_node = neighbor
# First, check if end_node_key has additional nodes beyond
end_node_degree = graph.degree(current_node)
if end_node_degree > 1:
# breakpoint()
# First add the end node to the graph
# If its a graph, add the entry point
if isinstance(current_node, nx.Graph):
path["main"].append(current_node.graph["entry_point"])
else:
path["main"].append(current_node)
# Continue walking past the end node until we get back
neighbors = [neighbor for neighbor in graph.neighbors(current_node)]
for neighbor in neighbors:
if neighbor != path["main"][-2]:
break
current_node = neighbor
while current_node != end_node_key:
# If its a graph
if isinstance(current_node, nx.Graph):
# If it's not in main, we need to recursively traverse
if not current_node in path["main"]:
sub_path = get_traversing_path(
current_node,
current_node.graph["entry_point"],
current_node.graph["entry_point"],
)
path = add_subpath_to_path(path, current_node, sub_path)
# If it is in main, simply add the entry point and continue
else:
path["main"].append(current_node.graph["entry_point"])
else:
path["main"].append(current_node)
# Get the neighbors of the start node key
neighbors = [neighbor for neighbor in graph.neighbors(current_node)]
# We've reached the end of a path, start walking backwards
if len(neighbors) == 1:
current_node = neighbors[0]
continue
# Get the neighbor that is not the previous node
for neighbor in neighbors:
# If neighbor is a graph instance
if isinstance(neighbor, nx.Graph):
if neighbor.graph["entry_point"] != path["main"][-2]:
break
elif neighbor != path["main"][-2]:
break
current_node = neighbor
# Next, check if the end_node_key is a graph
if isinstance(end_node_key, nx.Graph):
# Very specific edge case
# If the end node key is the same as the start node key
# And the end node is the entry point of the end node key
# Skip the loop
if (
start_node_key == end_node_key
and end_node == end_node_key.graph["entry_point"]
):
# Add the end node to the path
path["main"].append(end_node_key.graph["entry_point"])
return path
end_path = get_traversing_path(
end_node_key, end_node_key.graph["entry_point"], end_node
)
path = add_subpath_to_path(path, end_node_key, end_path)
else:
path["main"].append(end_node_key)
return path
def edge_in_list(edge, edge_list):
edge_reversed = (edge[1], edge[0])
return edge in edge_list or edge_reversed in edge_list
def construct_tour(eulerian_graph):
# View the graph
# print(eulerian_graph)
# nx.draw(eulerian_graph, with_labels=True)
# plt.show()
# breakpoint()
if len(eulerian_graph.nodes) == 0:
return {"tour": [], "is_tour": True}
if len(eulerian_graph.nodes) == 1:
return {"tour": list(eulerian_graph.nodes), "is_tour": True}
tour = []
# Get the degree of each node
degrees = eulerian_graph.degree()
# If any of the degrees are 1, we need to start at that node
start_node = None
is_tour = True
for node, degree in degrees:
if degree == 1:
start_node = node
is_tour = False
break
# If no node has degree 1, start at any node
if start_node is None:
start_node = list(eulerian_graph.nodes)[0]
# Create a list of already visited edges
visited_edges = []
# First pass of tour
cur_node = start_node
while True:
neighbors = [neighbor for neighbor in eulerian_graph.neighbors(cur_node)]
selected_neighbor = None
edge = None
for neighbor in neighbors:
edge = (cur_node, neighbor)
if not edge_in_list(edge, visited_edges):
selected_neighbor = neighbor
break
if selected_neighbor is None:
break
visited_edges.append(edge)
tour.append((cur_node, neighbor))
cur_node = neighbor
while len(visited_edges) < len(eulerian_graph.edges):
# Second pass of tour
for i, (start_node, end_node) in enumerate(tour):
# Check if start node has any unvisited edges
neighbors = [neighbor for neighbor in eulerian_graph.neighbors(start_node)]
new_edge = None
# Iterate through all neighbors and check if the edge is visited
for neighbor in neighbors:
edge = (start_node, neighbor)
if not edge_in_list(edge, visited_edges):
new_edge = edge
break
# If all edges are visted for this node, move to the next edge
if new_edge is None:
continue
# Insert the new edge into the tour
sub_tour = [(start_node, neighbor)]
visited_edges.append(new_edge)
cur_node = neighbor
while cur_node != start_node:
neighbors = [
neighbor for neighbor in eulerian_graph.neighbors(cur_node)
]
selected_neighbor = None
edge = None
for neighbor in neighbors:
edge = (cur_node, neighbor)
if not edge_in_list(edge, visited_edges):
selected_neighbor = neighbor
break
if selected_neighbor is None:
break
visited_edges.append(edge)
sub_tour.append((cur_node, neighbor))
cur_node = neighbor
# Insert the sub tour into the main tour
tour = tour[:i] + sub_tour + tour[i:]
break
# Add the start node back
# Next, recursively construct tours of any subgraphs
expanded_nodes = []
output = {
"tour": [],
"is_tour": is_tour,
}
for i, (start_node, end_node) in enumerate(tour):
if isinstance(start_node, nx.Graph):
# Expand if not already expanded
if start_node in expanded_nodes:
# Add entry point
output["tour"].append(start_node.graph["entry_point"])
else:
# Generate the sub tour
sub_tour = construct_tour(start_node)
output["tour"].append(start_node)
add_subpath_to_path(output, start_node, sub_tour)
expanded_nodes.append(start_node)
else:
output["tour"].append(start_node)
# Process the last node
try:
if isinstance(end_node, nx.Graph):
# if end_node in expanded_nodes:
# # Add entry point
# output["tour"].append(end_node.graph["entry_point"])
# else:
sub_tour = construct_tour(end_node)
output["tour"].append(end_node)
add_subpath_to_path(output, end_node, sub_tour)
expanded_nodes.append(end_node)
else:
output["tour"].append(end_node)
except:
breakpoint()
return output
# def retrieve_path(node_vistation_count, node, tour):
# # If not a list, there is only one path
# if not isinstance(tour[node], list):
# node_vistation_count[node] = 1
# return tour[node]
# # If the node has been visited before, increment the count
# if node in node_vistation_count:
# node_vistation_count[node] += 1
# else:
# node_vistation_count[node] = 1
# return tour[node][node_vistation_count[node] - 1]
def get_shortest_path(graph, start, end):
if start == end:
return [start]
# Get the shortest path from start to end
start_node = graph_where(graph, start)
end_node = graph_where(graph, end)
# Get the shortest path
shortest_path = nx.shortest_path(graph, start_node, end_node, weight=distance)
expanded_shortest_path = []
for i, node in enumerate(shortest_path):
if isinstance(node, nx.Graph):
if i == 0:
sub_path_start = start
sub_path_end = node.graph["entry_point"]
elif i == len(shortest_path) - 1:
sub_path_start = node.graph["entry_point"]
sub_path_end = end
else:
sub_path_start = node.graph["entry_point"]
sub_path_end = node.graph["entry_point"]
sub_path = get_shortest_path(node, start, end)
expanded_shortest_path.extend(sub_path)
else:
expanded_shortest_path.append(node)
return expanded_shortest_path
def _get_traversing_path_helper(graph, tour, start, end):
# Find the start and end node in the tour
# This will either be the node itself or a graph containing the node
start_node = graph_where(graph, start)
end_node = graph_where(graph, end)
# breakpoint()
# # Create a unique identifier for each subgraph that needs to be traversed
# id_to_graph = {}
# node_vistation_count = {}
# for i, node in enumerate(tour["tour"]):
# if isinstance(node, nx.Graph):
# id_to_graph[i] = node
# tour["tour"][i] = i
# tour[i] = tour[node].pop(0)
# If this is a tour, the whole thing is a loop
# We need to simply start at the start node and traverse the tour
if tour["is_tour"]:
# Confirm that it loops as a tour
assert tour["tour"][0] == tour["tour"][-1]
# Find the first instance of the start node
start_index = tour["tour"].index(start_node)
traversing_path = tour["tour"][start_index:]
# Start at 1 to avoid the start node, which is already in the path
# Include start node in the path
traversing_path.extend(tour["tour"][1:start_index])
# Find the shortest path from the start node to the end node
shortest_path = nx.shortest_path(graph, start_node, end_node, weight=distance)
# Add the shortest path to the traversing path
traversing_path.extend(shortest_path)
else:
# This is a path, not a tour
# Split trajectory into the following parts:
# 1. Start node to the start node key
# 2. Start node key to end node key
# 3. End node key to end node
# Find the start node key
start_index = tour["tour"].index(start_node)
end_index = tour["tour"].index(end_node)
# Flip the path if the start index is greater than the end index
if start_index > end_index:
tour["tour"] = tour["tour"][::-1]
start_index = tour["tour"].index(start_node)
end_index = tour["tour"].index(end_node)
start_to_path_begin = tour["tour"][: start_index + 1][::-1]
start_to_end = tour["tour"][start_index : end_index + 1]
end_to_path_end = tour["tour"][end_index:]
if len(start_to_path_begin) == 0:
path_begin_to_start = []
else:
# Get shortest path back
path_begin_to_start = nx.shortest_path(
graph, start_to_path_begin[-1], start_node, weight=distance
)
if len(end_to_path_end) == 0:
path_end_to_end = []
else:
path_end_to_end = nx.shortest_path(
graph, end_to_path_end[-1], end_node, weight=distance
)
# breakpoint()
# Go to path begin
traversing_path = start_to_path_begin
# Return to start node
# Start at 1 to avoid the start node, which is already in the path
traversing_path.extend(path_begin_to_start[1:])
# Go to end node
traversing_path.extend(start_to_end[1:])
# Go to path end
traversing_path.extend(end_to_path_end[1:])
# Return to end node
traversing_path.extend(path_end_to_end[1:])
# breakpoint()
# Now, recursively traverse the subgraphs within the path
new_traversing_path = []
expanded_nodes = []
for i, node in enumerate(traversing_path):
# If it's a graph
if isinstance(node, nx.Graph):
if len(traversing_path) == 1:
# If the graph is the only node in the path
sub_path_start = start
sub_path_end = end
sub_path = get_traversing_path(
node, tour[node], sub_path_start, sub_path_end
)
else:
# Define and start of the sub path depending
# on whether the graph is in the beginning, middle, or end of path
if i == 0:
sub_path_start = start
sub_path_end = node.graph["entry_point"]
elif i == len(traversing_path) - 1:
sub_path_start = node.graph["entry_point"]
sub_path_end = end
else:
sub_path_start = node.graph["entry_point"]
sub_path_end = node.graph["entry_point"]
if (node in expanded_nodes or node == end_node) and i != len(
traversing_path
) - 1:
sub_path = get_shortest_path(node, sub_path_start, sub_path_end)
else:
sub_path = get_traversing_path(
node, tour[node], sub_path_start, sub_path_end
)
expanded_nodes.append(node)
new_traversing_path.extend(sub_path)
else:
new_traversing_path.append(node)
return new_traversing_path
def get_traversing_path(graph, start, end):
eulerian_graph = get_eulerian_path(graph)
tour = construct_tour(eulerian_graph)
if len(tour["tour"]) == 0:
return []
try:
return _get_traversing_path_helper(eulerian_graph, tour, start, end)
except:
breakpoint()
def draw_graph(graph):
nx.draw(graph, with_labels=True)
plt.show()
if __name__ == "__main__":
# path = [(0, 0), (0, 1), (1, 1), (2, 1), (1, 1), (2, 2), (3, 3)]
path = [(1, 1), (2, 2), (3, 3), (5, 5), (0, 1), (1, 1)]
# path = [
# (-1, -5),
# (0, 0),
# (1, 1),
# (1, 0),
# (0, 0),
# (5, 5),
# (6, 6),
# (7, 7),
# (6, 6),
# (3, 3),
# ]
graph = graph_from_path(path)
start = (1, 1)
end = (3, 3)
print(get_traversing_path(graph, start, end))
# traversing_path = get_traversing_path(eulerian_graph, start, end)
# print(traversing_path)
# breakpoint()
# graph_where(eulerian_graph, start)