-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
229 lines (185 loc) · 8.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch.nn as nn
import torch
import os
import sys
import datetime
import torch.cuda
from tools.optim_sche import get_optim_sche
from tools.get_data import get_train_loader, get_test_loader
from tools.get_parameters import get_args
from tools.flops_params import get_flops_params
from prune import prune_net
CHECK_POINT_PATH = "./checkpoint"
def train_epoch(net, epoch, trainloader, loss_function, optimizer, fepoch, fstep):
net.train()
length = len(trainloader)
total_sample = len(trainloader.dataset)
total_loss = 0
correct_1 = 0
correct_5 = 0
batch_size = 0
for step, (x, y) in enumerate(trainloader):
x = x.cuda()
y = y.cuda()
if step == 0:
batch_size = len(y)
optimizer.zero_grad()
output = net(x)
loss = loss_function(output, y)
loss.backward()
optimizer.step()
total_loss += loss.item()
_, predict = output.topk(5, 1, True, True)
# _, predict = torch.max(output, 1)
predict = predict.t()
correct = predict.eq(y.view(1, -1).expand_as(predict))
correct_1 += correct[:1].view(-1).sum()
correct_5 += correct[:5].view(-1).sum()
# correct += (predict == y).sum()
if step % 20 == 0:
print("Epoch:{}\t Step:{}\t TrainedSample:{}\t TotalSample:{}\t Loss:{:.3f}".format(
epoch + 1, step + 1, step * batch_size + len(y), total_sample, loss.item()
))
if step % 40 == 0:
fstep.write("Epoch:{}\t Step:{}\t TrainedSample:{}\t TotalSample:{}\t Loss:{:.3f}\n".format(
epoch + 1, step + 1, step * batch_size + len(y), total_sample, loss.item()
))
fstep.flush()
fepoch.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc1:{:.3%}\t acc5:{:.3%}\n".format(
epoch + 1, total_loss/length, optimizer.param_groups[0]['lr'], float(correct_1) / total_sample,
float(correct_5)/total_sample
))
fepoch.flush()
return net
def eval_epoch(net, testloader):
loss_function = nn.CrossEntropyLoss()
net.eval()
length = len(testloader)
total_sample = len(testloader.dataset)
total_loss = 0
correct_1 = 0
correct_5 = 0
inference_time = 0
for step, (x, y) in enumerate(testloader):
x = x.cuda()
y = y.cuda()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
output = net(x)
# _, predict = torch.max(output, 1)
_, predict = output.topk(5, 1, True, True)
end.record()
# Waits for everything to finish running
torch.cuda.synchronize()
inference_time += start.elapsed_time(end) # milliseconds
loss = loss_function(output, y)
total_loss += loss.item()
predict = predict.t()
correct = predict.eq(y.view(1, -1).expand_as(predict))
correct_1 += correct[:1].view(-1).sum()
correct_5 += correct[:5].view(-1).sum()
# correct += (predict == y).sum()
acc1 = float(correct_1) / total_sample
acc5 = float(correct_5) / total_sample
return acc1, acc5, total_loss/length, inference_time
def training(net, total_epoch, trainloader, testloader, retrain, lr, optim, most_recent_path, train_checkpoint_path):
# define optimizer, scheduler and loss function
optimizer, scheduler = get_optim_sche(lr, optim, net, args.dataset, retrain=retrain)
loss_function = nn.CrossEntropyLoss()
# initial best_acc(for early stop) and total_time(for inference time)
best_acc = 0
# best_acc = 0.72374
total_time = 0
pre_epoch = 0
if not os.path.exists(train_checkpoint_path):
os.makedirs(train_checkpoint_path)
with open(os.path.join(train_checkpoint_path, 'EpochLog.txt'), 'w') as fepoch:
with open(os.path.join(train_checkpoint_path, 'StepLog.txt'), 'w') as fstep:
with open(os.path.join(train_checkpoint_path, 'EvalLog.txt'), 'w') as feval:
with open(os.path.join(train_checkpoint_path, 'Best.txt'), 'w') as fbest:
print("start training")
for epoch in range(pre_epoch, total_epoch):
train_epoch(net, epoch, trainloader, loss_function, optimizer, fepoch, fstep)
print("evaluating")
accuracy1, accuracy5, averageloss, inference_time = eval_epoch(net, testloader)
feval.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc1:{:.3%}\t acc5:{:.3%}\n".format(
epoch + 1, averageloss, optimizer.param_groups[0]['lr'], accuracy1, accuracy5
))
feval.flush()
if scheduler is not None:
scheduler.step()
print("saving regular")
torch.save(net.state_dict(), os.path.join(train_checkpoint_path, 'regularParam.pth'))
if accuracy1 > best_acc:
print("saving best")
torch.save(net.state_dict(), os.path.join(train_checkpoint_path, 'bestParam.pth'))
torch.save(net.state_dict(), os.path.join(most_recent_path, 'bestParam.pth'))
fbest.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc1:{:.3%}\t acc5:{:.3%}\n".format(
epoch + 1, averageloss, optimizer.param_groups[0]['lr'], accuracy1, accuracy5
))
fbest.flush()
best_acc = accuracy1
# print(inference_time)
total_time += (inference_time / len(testloader.dataset))
print(total_time)
print(total_time / total_epoch)
return net
if __name__ == '__main__':
# arguments from command line
args = get_args()
# data processing
train_loader = get_train_loader(args)
test_loader = get_test_loader(args)
# define gpus and get net
device_ids = [int(i) for i in list(args.gpu.split(','))]
net = None
if args.net == 'vgg16':
from netModels.VGG import MyVgg16
net = MyVgg16(10)
print(net)
elif args.net == 'resnet34':
from netModels.ResNet34 import MyResNet34
net = MyResNet34()
print(net)
else:
print('We don\'t support this net.')
sys.exit()
net = nn.DataParallel(net, device_ids=device_ids)
net = net.cuda()
# define checkpoint path
time = str(datetime.date.today() + datetime.timedelta(days=2))
checkpoint_path = os.path.join(CHECK_POINT_PATH, args.net)
train_checkpoint_path = os.path.join(checkpoint_path, 'train', time)
train_most_recent_path = os.path.join(checkpoint_path, 'train')
prune_checkpoint_path = os.path.join(checkpoint_path, 'prune', time)
prune_most_recent_path = os.path.join(checkpoint_path, 'prune')
retrain_checkpoint_path = os.path.join(checkpoint_path, 'retrain', time)
retrain_most_recent_path = os.path.join(checkpoint_path, 'retrain')
# train
if args.trainflag:
training(net, args.e, train_loader, test_loader, False, args.lr, args.optim,
train_most_recent_path, train_checkpoint_path)
new_net = None
if args.pruneflag:
if not os.path.exists(prune_checkpoint_path):
os.makedirs(prune_checkpoint_path)
if os.path.exists(os.path.join(train_most_recent_path, 'bestParam.pth')):
net.load_state_dict(torch.load(os.path.join(train_most_recent_path, 'bestParam.pth')))
new_net = prune_net(net, args.independentflag, args.prune_layers, args.prune_channels, args.net, args.
shortcutflag)
f, p = get_flops_params(new_net.module.cpu(), args.net)
new_net = new_net.cuda()
with open(os.path.join(prune_checkpoint_path, 'flops_and_params'), 'w') as fp:
fp.write("flops:{}\t params:{}\n".format(f, p))
fp.flush()
torch.save(new_net.state_dict(), os.path.join(prune_checkpoint_path, 'prunedParam.pth'))
torch.save(new_net.state_dict(), os.path.join(prune_most_recent_path, 'prunedParam.pth'))
if args.retrainflag:
# new_net.load_state_dict(torch.load(os.path.join(retrain_most_recent_path, 'regularParam.pth')))
# print("evaluating")
# top1, top5, loss, infer_time = eval_epoch(new_net, test_loader)
# print("Eval after pruning:\t Loss:{:.3f}\t acc1:{:.3%}\t acc5:{:.3%}\t Inference time:{:.3%}\n"
# .format(loss, top1, top5, infer_time / len(test_loader.dataset)))
training(net, args.retrainepoch, train_loader, test_loader, True, args.retrainlr, args.optim,
retrain_most_recent_path, retrain_checkpoint_path)