-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpruneAnalysis.py
337 lines (284 loc) · 12.7 KB
/
pruneAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import torch.nn as nn
import torch
import torch.cuda
import matplotlib.pyplot as plt
import numpy as np
import os
import json
import datetime
from netModels.VGG import MyVgg16
from netModels.ResNet34 import MyResNet34
from tools.get_data import get_test_loader
from tools.get_data import get_train_loader
from tools.get_parameters import get_args
from prune import prune_net
from train import eval_epoch
from train import training
CHECK_POINT_PATH = "./checkpoint"
colors = ['r', 'g', 'b', 'k', 'y', 'm', 'c']
lines = ['-', '--', '-.']
vgg16_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5', 'conv_6', 'conv_7', 'conv_8', 'conv_9', 'conv_10',
'conv_11', 'conv_12', 'conv_13']
vgg16_total_channels = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512]
first_layers = ['conv_2', 'conv_4', 'conv_6', 'conv_8', 'conv_10', 'conv_12', 'conv_14', 'conv_16', 'conv_18',
'conv_20', 'conv_22', 'conv_24', 'conv_26', 'conv_28', 'conv_30', 'conv_32']
first_total_channels = [64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 512, 512, 512]
shortcut_layers = ['downsample_1', 'downsample_2', 'downsample_3']
shortcut_total_channels = [128, 256, 512]
device_ids = [0, 1]
def sort_filter(args):
# get the desired net
load_path = os.path.join(CHECK_POINT_PATH, args.net, "train", "bestParam.pth")
net = get_net(args.net)
new_net = get_net(args.net)
if os.path.exists(load_path):
net.load_state_dict(torch.load(load_path))
# make the figure
shortcut = ""
if args.shortcutflag:
shortcut = "shortcut_"
plt.figure()
conv_count = 0
figure_count = 1
for layer in net.module.modules():
if isinstance(layer, nn.Conv2d):
# exclude shortcut conv or residual conv
if args.shortcutflag:
if layer.kernel_size != (1, 1):
continue
else:
if layer.kernel_size == (1, 1):
continue
line_style = colors[conv_count % len(colors)] + lines[conv_count // len(colors) % len(lines)]
weight = layer.weight.data.cpu().numpy()
abs_sum_sorted = np.sort(np.sum(((np.abs(weight)).reshape(weight.shape[0], -1)), axis=1), axis=0)[::-1]
norm_filter = abs_sum_sorted/abs_sum_sorted[0]
conv_count += 1
plt.plot(np.linspace(0, 100, norm_filter.shape[0]), norm_filter, line_style,
label=shortcut + 'conv %d' % conv_count)
# if there are too many convs in a figure, make a new one
if conv_count % 17 == 0:
plt.title("Data: %s" % args.dataset + ", Model: %s" % args.net)
plt.ylabel("normalized abs sum of filter weight")
plt.xlabel("filter index / # filters (%)")
plt.legend(loc='upper right')
plt.xlim([0, 140])
# plt.grid()
plt.savefig(args.net + "_" + shortcut + str(figure_count) + "_" + "filters_ranked.png",
bbox_inches='tight')
plt.show()
plt.figure()
figure_count += 1
plt.title("Data: %s" % args.dataset + ", Model: %s" % args.net)
plt.ylabel("normalized abs sum of filter weight")
plt.xlabel("filter index / # filters (%)")
plt.legend(loc='upper right')
plt.xlim([0, 140])
# plt.grid()
plt.savefig(args.net + "_" + shortcut + str(figure_count) + "_" + "filters_ranked.png", bbox_inches='tight')
plt.show()
def prune_analysis(args):
# get the desired net layers, and channels
layers, total_channels = get_list(args.net, args.shortcutflag)
load_path = os.path.join(CHECK_POINT_PATH, args.net, "train", "bestParam.pth")
# get the args for eval
test_loader = get_test_loader(args)
independentflag = False
if args.shortcutflag:
shortcut = "shortcut_"
else:
shortcut = ""
# the parameter for prune
max_prune_ratio = 0.90
accuracy1 = {}
accuracy5 = {}
# for all layers in the net
for conv, channels in zip(layers, total_channels):
new_net = get_net(args.net)
if os.path.exists(load_path):
new_net.load_state_dict(torch.load(load_path))
print("evaluating")
top1, top5, loss, infer_time = eval_epoch(new_net, test_loader)
print("Eval before pruning" + ": Loss:{:.3f}\t acc1:{:.3%}\t acc5:{:.3%}\t Inference time:{:.3}\n"
.format(loss, top1, top5, infer_time / len(test_loader.dataset)))
accuracy1[conv] = [top1]
accuracy5[conv] = [top5]
prune_layers = [conv]
prune_channels = np.linspace(0, int(channels * max_prune_ratio), 10, dtype=int)
prune_channels = (prune_channels[1:] - prune_channels[:-1]).tolist()
# for each layer
for index, prune_channel in enumerate(prune_channels):
# prune
new_net = prune_net(new_net, independentflag, prune_layers, [prune_channel], args.net, args.shortcutflag)
# eval
print("evaluating")
top1, top5, loss, infer_time = eval_epoch(new_net, test_loader)
print("Eval after pruning " + conv, index, ":\t Loss:{:.3f}\t acc1:{:.3%}\t acc5:{:.3%}\t "
"Inference time:{:.3}\n".format(loss, top1, top5, infer_time /
len(test_loader.dataset)))
accuracy1[conv].append(top1)
accuracy5[conv].append(top5)
with open('top1', 'w') as fout:
json.dump(accuracy1, fout)
with open('top5', 'w') as fout:
json.dump(accuracy5, fout)
# with open('top1', "r") as jsonfile:
# accuracy1 = json.load(jsonfile)
# with open('top5', "r") as jsonfile:
# accuracy5 = json.load(jsonfile)
plt.figure()
for index, (conv, acc1) in enumerate(accuracy1.items()):
line_style = colors[index % len(colors)] + lines[index // len(colors) % len(lines)] + 'o'
xs = np.linspace(0, 90, len(acc1))
plt.plot(xs, acc1, line_style,
label=conv+' '+str(total_channels[index]))
plt.title("Data: %s" % args.dataset + ", Model: %s" % args.net + ", pruned smallest filters (greedy)")
plt.ylabel("Accuracy(top1)")
plt.xlabel("Filters Pruned Away(%)")
plt.legend(loc='upper right')
plt.xlim([0, 100])
# plt.ylim([0.50, 0.75])
# plt.grid()
plt.savefig(shortcut+args.dataset + "_pruned_top1.png", bbox_inches='tight')
plt.show()
plt.figure()
for index, (conv, acc5) in enumerate(accuracy5.items()):
line_style = colors[index % len(colors)] + lines[index // len(colors) % len(lines)] + 'o'
xs = np.linspace(0, 90, len(acc5))
plt.plot(xs, acc5, line_style,
label=conv + ' ' + str(total_channels[index]))
plt.title("Data: %s" % args.dataset + ", Model: %s" % args.net + ", pruned smallest filters (greedy)")
plt.ylabel("Accuracy(top5)")
plt.xlabel("Filters Pruned Away(%)")
plt.legend(loc='upper right')
plt.xlim([0, 100])
# plt.ylim([0.5, 0.75])
# plt.grid()
plt.savefig(shortcut+args.dataset + "_pruned_top5.png", bbox_inches='tight')
plt.show()
def prune_retrain_analysis(args):
load_path = os.path.join(CHECK_POINT_PATH, args.net, "train", "bestParam.pth")
test_loader = get_test_loader(args)
if args.shortcutflag:
shortcut = "shortcut_"
else:
shortcut = ""
new_net = get_net(args.net)
if os.path.exists(load_path):
new_net.load_state_dict(torch.load(load_path))
top1_org, top5_org, loss, infer_time = eval_epoch(new_net, test_loader)
layers, total_channels = get_list(args.net, args.shortcutflag)
independentflag = False
max_prune_ratio = 0.90
min_prune_ratio = 0.20
accuracy1 = {}
accuracy5 = {}
# for all layers
for conv, channels in zip(layers, total_channels):
accuracy1[conv] = [top1_org]
accuracy5[conv] = [top5_org]
prune_layers = [conv]
prune_channels = np.linspace(int(channels * min_prune_ratio), int(channels * max_prune_ratio), 8, dtype=int).\
tolist()
# for each layer
for index, prune_channel in enumerate(prune_channels):
# get net and prune
new_net = get_net(args.net)
if os.path.exists(load_path):
new_net.load_state_dict(torch.load(load_path))
new_net = prune_net(new_net, independentflag, prune_layers, [prune_channel], args.net, args.shorcutflag)
# retrain
new_net = filter_retrain(new_net, conv + ':pruned %d' % prune_channel)
# eval
top1, top5, loss, infer_time = eval_epoch(new_net, test_loader)
print("Eval after pruning" + conv, index, ":\t Loss:{:.3f}\t acc1:{:.3%}\t acc5:{:.3%}\t "
"Inference time:{:.3}\n".format(loss, top1, top5, infer_time /
len(test_loader.dataset)))
accuracy1[conv].append(top1)
accuracy5[conv].append(top5)
with open('top1', 'w') as fout:
json.dump(accuracy1, fout)
with open('top5', 'w') as fout:
json.dump(accuracy5, fout)
# with open('top1', "r") as jsonfile:
# accuracy1 = json.load(jsonfile)
# with open('top5', "r") as jsonfile:
# accuracy5 = json.load(jsonfile)
plt.figure()
for index, (conv, acc1) in enumerate(accuracy1.items()):
line_style = colors[index % len(colors)] + lines[index // len(colors)] + 'o'
xs = [0] + list(np.linspace(20, 90, len(acc1)-1))
xs = np.array(xs)
plt.plot(xs, acc1, line_style,
label=conv + ' ' + str(total_channels[index]))
plt.title("Data: %s" % args.dataset + ", Model: %s" % args.net + ", pruned smallest filters (greedy), retrain %d "
"epochs" % args.retrainepoch)
plt.ylabel("Accuracy(top1)")
plt.xlabel("Filters Pruned Away(%)")
plt.legend(loc='lower left')
plt.xlim([0, 100])
# plt.grid()
plt.savefig(shortcut + args.dataset + "_retrained_top1.png", bbox_inches='tight')
plt.show()
plt.figure()
for index, (conv, acc5) in enumerate(accuracy5.items()):
line_style = colors[index % len(colors)] + lines[index // len(colors)] + 'o'
xs = [0] + list(np.linspace(20, 90, len(acc5)-1))
xs = np.array(xs)
plt.plot(xs, acc5, line_style,
label=conv + ' ' + str(total_channels[index]))
plt.title("Data: %s" % args.dataset + ", Model: %s" % args.net + ", pruned smallest filters (greedy), retrain %d "
"epochs" % args.retrainepoch)
plt.ylabel("Accuracy(top5)")
plt.xlabel("Filters Pruned Away(%)")
plt.legend(loc='lower left')
plt.xlim([0, 100])
# plt.grid()
plt.savefig(shortcut + args.dataset + "_retrained_top5.png", bbox_inches='tight')
plt.show()
def get_net(net_name):
if net_name == 'vgg16':
net = MyVgg16(10)
elif net_name == "resnet34":
net = MyResNet34()
else:
print("The net is not provided.")
exit(0)
net = nn.DataParallel(net, device_ids=device_ids)
net = net.cuda()
return net
def get_list(net_name, shortcutflag):
if net_name == 'vgg16':
return vgg16_layers, vgg16_total_channels
elif net_name == "resnet34":
if shortcutflag:
return shortcut_layers, shortcut_total_channels
else:
return first_layers, first_total_channels
else:
print("The net is not provided.")
exit(0)
def filter_retrain(net, dirname):
checkpoint_path = os.path.join(CHECK_POINT_PATH, args.net)
time = str(datetime.date.today())
most_recent_path = os.path.join(checkpoint_path, 'retrain', "most_recnet", dirname)
if not os.path.exists(most_recent_path):
os.makedirs(most_recent_path)
retrain_checkpoint_path = os.path.join(checkpoint_path, 'retrain', time, dirname)
if not os.path.exists(retrain_checkpoint_path):
os.makedirs(retrain_checkpoint_path)
train_loader = get_train_loader(args)
test_loader = get_test_loader(args)
net = training(net, 20, train_loader, test_loader, True, 0.001, 'SGD', retrain_checkpoint_path, most_recent_path)
return net
if __name__ == '__main__':
# arguments from command line
args = get_args()
# Analysis
if args.sortflag:
sort_filter(args)
if args.pruneflag:
if args.retrainflag:
prune_retrain_analysis(args)
else:
prune_analysis(args)