-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhparam_tuning_poker.py
48 lines (33 loc) · 1.29 KB
/
hparam_tuning_poker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from uci_test import run_once
from datetime import datetime
import numpy as np
import sys
# 'mlp', 'json-nn', or 'set-nn-max'
model = 'json-nn-modified'
learning_rates = [ 0.001 ]#, 0.0005, 0.00025 ]
batch_sizes = [ 4, 16, 64 ]
mem_dims = [ 32, 64, 128 ]
layers = [ 1, 3, 5 ]
for fraction in [ 0.9 ]:#, 0.2, 0.5 ]:
for i in range(5):
starttime = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
np.random.seed(int(datetime.now().timestamp()))
args = {}
args['model_type'] = model
args['dataset'] = 'poker'
args['lr'] = np.random.choice(learning_rates)
args['mem_dim'] = np.random.choice(mem_dims)
args['batch_size'] = np.random.choice(batch_sizes)
args['epochs'] = 50
if model == 'mlp':
args['layers'] = np.random.choice(layers)
args['poker_frac_test'] = fraction
print("{}, args:{}\n".format(model, args))
loss, acc = run_once(**args)
outfile = "hparam_uci_poker3.txt"
endtime = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
with open(outfile, 'a+') as f:
f.write("{} -> {}\n".format(starttime, endtime))
f.write("args: {}\n".format(args))
f.write("test_loss: {}\n".format(loss))
f.write("test_acc: {}\n\n".format(acc))