forked from thu-ml/SageAttention
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsageattn_cogvideo.py
28 lines (22 loc) · 1.19 KB
/
sageattn_cogvideo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
from sageattention import sageattn
import torch.nn.functional as F
F.scaled_dot_product_attention = sageattn
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
).to("cuda")
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)