forked from linkedin/Liger-Kernel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmarks_visualizer.py
169 lines (136 loc) · 5.16 KB
/
benchmarks_visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import json
import os
from argparse import ArgumentParser
from dataclasses import dataclass
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
DATA_PATH = "data/all_benchmark_data.csv"
VISUALIZATIONS_PATH = "visualizations/"
@dataclass
class VisualizationsConfig:
"""
Configuration for the visualizations script.
Args:
kernel_name (str): Kernel name to benchmark. (Will run `scripts/benchmark_{kernel_name}.py`)
metric_name (str): Metric name to visualize (speed/memory)
kernel_operation_mode (str): Kernel operation mode to visualize (forward/backward/full). Defaults to "full"
display (bool): Display the visualization. Defaults to False
overwrite (bool): Overwrite existing visualization, if none exist this flag has no effect as ones are always created and saved. Defaults to False
"""
kernel_name: str
metric_name: str
kernel_operation_mode: str = "full"
display: bool = False
overwrite: bool = False
def parse_args() -> VisualizationsConfig:
"""Parse command line arguments into a configuration object.
Returns:
VisualizationsConfig: Configuration object for the visualizations script.
"""
parser = ArgumentParser()
parser.add_argument(
"--kernel-name", type=str, required=True, help="Kernel name to benchmark"
)
parser.add_argument(
"--metric-name",
type=str,
required=True,
help="Metric name to visualize (speed/memory)",
)
parser.add_argument(
"--kernel-operation-mode",
type=str,
required=True,
help="Kernel operation mode to visualize (forward/backward/full)",
)
parser.add_argument(
"--display", action="store_true", help="Display the visualization"
)
parser.add_argument(
"--overwrite",
action="store_true",
help="Overwrite existing visualization, if none exist this flag has no effect as one are always created",
)
args = parser.parse_args()
return VisualizationsConfig(**dict(args._get_kwargs()))
def load_data(config: VisualizationsConfig) -> pd.DataFrame:
"""Loads the benchmark data from the CSV file and filters it based on the configuration.
Args:
config (VisualizationsConfig): Configuration object for the visualizations script.
Raises:
ValueError: If no data is found for the given filters.
Returns:
pd.DataFrame: Filtered benchmark dataframe.
"""
df = pd.read_csv(DATA_PATH)
df["extra_benchmark_config"] = df["extra_benchmark_config_str"].apply(json.loads)
filtered_df = df[
(df["kernel_name"] == config.kernel_name)
& (df["metric_name"] == config.metric_name)
& (df["kernel_operation_mode"] == config.kernel_operation_mode)
# Use this to filter by extra benchmark configuration property
# & (data['extra_benchmark_config'].apply(lambda x: x.get('H') == 4096))
# FIXME: maybe add a way to filter using some configuration, except of hardcoding it
]
if filtered_df.empty:
raise ValueError("No data found for the given filters")
return filtered_df
def plot_data(df: pd.DataFrame, config: VisualizationsConfig):
"""Plots the benchmark data, saving the result if needed.
Args:
df (pd.DataFrame): Filtered benchmark dataframe.
config (VisualizationsConfig): Configuration object for the visualizations script.
"""
xlabel = df["x_label"].iloc[0]
ylabel = f"{config.metric_name} ({df['metric_unit'].iloc[0]})"
# Sort by "kernel_provider" to ensure consistent color assignment
df = df.sort_values(by="kernel_provider")
plt.figure(figsize=(10, 6))
sns.set(style="whitegrid")
ax = sns.lineplot(
data=df,
x="x_value",
y="y_value_50",
hue="kernel_provider",
marker="o",
palette="tab10",
errorbar=("ci", None),
)
# Seaborn can't plot pre-computed error bars, so we need to do it manually
lines = ax.get_lines()
colors = [line.get_color() for line in lines]
for (_, group_data), color in zip(df.groupby("kernel_provider"), colors):
# for i, row in group_data.iterrows():
y_error_lower = group_data["y_value_50"] - group_data["y_value_20"]
y_error_upper = group_data["y_value_80"] - group_data["y_value_50"]
y_error = [y_error_lower, y_error_upper]
plt.errorbar(
group_data["x_value"],
group_data["y_value_50"],
yerr=y_error,
fmt="o",
color=color,
capsize=5,
)
plt.legend(title="Kernel Provider")
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.tight_layout()
out_path = os.path.join(
VISUALIZATIONS_PATH, f"{config.kernel_name}_{config.metric_name}.png"
)
if config.display:
plt.show()
if config.overwrite or not os.path.exists(
out_path
): # Save the plot if it doesn't exist or if we want to overwrite it
os.makedirs(VISUALIZATIONS_PATH, exist_ok=True)
plt.savefig(out_path)
plt.close()
def main():
config = parse_args()
df = load_data(config)
plot_data(df, config)
if __name__ == "__main__":
main()