-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path01-exploring-data.Rmd
348 lines (259 loc) · 8.26 KB
/
01-exploring-data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Exploring data {#exploring-data}
This unit focuses on data visualization and data wrangling.
Specifically we cover fundamentals of data and data visualization, confounding variables, and Simpson's paradox as well as the concept of tidy data, data import, data cleaning, and data curation.
We end the unit with web scraping and introduce the idea of iteration in preparation for the next unit.
Also in this unit students are introduced to the toolkit: R, RStudio, R Markdown, Git, and GitHub.
## Visualising data
::: {.slide-deck}
**Unit 2 - Deck 1: Data and visualisation**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d01-data-viz/u2-d01-data-viz.html#1)
:::
::: {.video}
[Video](https://youtu.be/FddF4b_GuTI)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 2: Visualising data with ggplot2**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d02-ggplot2/u2-d02-ggplot2.html#1)
:::
::: {.video}
[Video](https://youtu.be/s2NF2J36ljE)
:::
::: {.reading}
R4DS :: [Chp 3 - Data visualization](https://r4ds.had.co.nz/data-visualisation.html)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 3: Visualising numerical data**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d03-viz-num/u2-d03-viz-num.html#1)
:::
::: {.video}
[Video](https://youtu.be/waBabVTI8ec)
:::
::: {.reading}
IMS :: [Chp 4 - Exploring numerical data](https://openintro-ims.netlify.app/explore-numerical.html):::
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 4: Visualising categorical data**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d04-viz-cat/u2-d04-viz-cat.html#1)
:::
::: {.video}
[Video](https://youtu.be/21h3rEO8k2E)
:::
::: {.reading}
IMS :: [Chp 5 - Exploring categorical data](https://openintro-ims.netlify.app/explore-categorical.html)
:::
:::
## Wrangling and tidying data
::: {.slide-deck}
**Unit 2 - Deck 5: Tidy data**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d05-tidy-data/u2-d05-tidy-data.html#1)
:::
::: {.video}
[Video](https://youtu.be/Ux85eR3h9hw)
:::
::: {.reading}
JSS :: [Tidy data](https://www.jstatsoft.org/article/view/v059i10)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 6: Grammar of data wrangling**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d06-grammar-wrangle/u2-d06-grammar-wrangle.html#1)
:::
::: {.video}
[Video](https://youtu.be/ZCaYBES_VEk)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 7: Working with a single data frame**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d07-single-df/u2-d07-single-df.html#1)
:::
::: {.video}
[Video](https://youtu.be/0229Uq2hkJo)
:::
::: {.reading}
R4DS :: [Chp 5 - Data transformation](https://r4ds.had.co.nz/transform.html)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 8: Working with multiple data frames**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d08-multi-df/u2-d08-multi-df.html#1)
:::
::: {.video}
[Video](https://youtu.be/VdV5ABsaf5Y)
:::
::: {.reading}
R4DS :: [Chp 13 - Relational data](https://r4ds.had.co.nz/relational-data.html)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 9: Tidying data**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d09-tidying/u2-d09-tidying.html#1)
:::
::: {.video}
[Video](https://youtu.be/x3KM5uxaFdI)
:::
::: {.reading}
R4DS :: [Chp 12 - Tidy data](https://r4ds.had.co.nz/tidy-data.html)
:::
:::
## Importing and recoding data
::: {.slide-deck}
**Unit 2 - Deck 10: Data types**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d10-data-types/u2-d10-data-types.html#1)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/slides/u2-d10-data-types)
:::
::: {.video}
[Video](https://youtu.be/WsxLbtWbEfc)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 11: Data classes**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d11-data-classes/u2-d11-data-classes.html#1)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/slides/u2-d11-data-classes)
:::
::: {.video}
[Video](https://youtu.be/dozvSVQcqqg)
:::
::: {.reading}
R4DS :: [Chp 15 - Factors](https://r4ds.had.co.nz/factors.html)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 12: Importing data**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d12-data-import/u2-d12-data-import.html#1)
:::
::: {.video}
[Video](https://youtu.be/tIMaRYiuEFA)
:::
::: {.reading}
R4DS :: [Chp 11 - Data import](https://r4ds.had.co.nz/data-import.html)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 13: Recoding data**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d13-data-recode/u2-d13-data-recode.html#1)
:::
::: {.video}
[Video](https://youtu.be/O8qxV3N4D5Q)
:::
::: {.reading}
R4DS :: [Sec 16.1 - 16.3 - Dates and times](https://r4ds.had.co.nz/dates-and-times.html)
:::
:::
## Communicating data science results effectively
::: {.slide-deck}
**Unit 2 - Deck 14: Tips for effective data visualization**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d14-effective-dataviz/u2-d14-effective-dataviz.html#1)
:::
::: {.video}
[Video](https://youtu.be/ZrifrBvFWgg)
:::
::: {.reading}
IMS :: [Chp 6 - Applications: Explore](https://openintro-ims.netlify.app/explore-applications.html)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 15: Scientific studies and confounding**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d15-studies-confounding/u2-d15-studies-confounding.html#1)
:::
::: {.video}
[Video](https://youtu.be/WnMzTBrZDcc)
:::
::: {.reading}
IMS :: [Chp 2 - Study design](https://openintro-ims.netlify.app/data-design.html)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 16: Simpson's paradox**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d16-simpsons-paradox/u2-d16-simpsons-paradox.html#1)
:::
::: {.video}
[Video](https://youtu.be/sdas62v0iJU)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 17: Doing data science**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d17-doing-data-science/u2-d17-doing-data-science.html#1)
:::
::: {.video}
[Video](https://youtu.be/b9lSW0kyqBg)
:::
::: {.reading}
R4DS :: [Chp 7 - Exploratory data analysis](https://r4ds.had.co.nz/exploratory-data-analysis.html)
:::
:::
## Web scraping and programming
::: {.slide-deck}
**Unit 2 - Deck 18: Web scraping**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d18-web-scrape/u2-d18-web-scrape.html#1)
:::
::: {.video}
[Video](https://youtu.be/99Hkmfb2i80)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 19: Scraping top 250 movies on IMDB**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d19-top-250-imdb/u2-d19-top-250-imdb.html#1)
:::
::: {.video}
[Video](https://youtu.be/YmKULNLsDsU)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 20: Web scraping considerations**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d20-considerations/u2-d20-considerations.html#1)
:::
::: {.video}
[Video](https://youtu.be/LONRJHMvSyU)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 21: Functions**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d21-functions/u2-d21-functions.html#1)
:::
::: {.video}
[Video](https://youtu.be/6KWlPhPMluE)
:::
::: {.reading}
R4DS :: [Chp 19 - Functions](https://r4ds.had.co.nz/functions.html)
:::
:::
::: {.slide-deck}
**Unit 2 - Deck 22: Iteration**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u2-d22-iteration/u2-d22-iteration.html#1)
:::
::: {.video}
[Video](https://youtu.be/x3UMny1fQhc)
:::
::: {.reading}
R4DS :: [Chp 20 - Iteration](https://r4ds.had.co.nz/iteration.html)
:::
:::