-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathservices.py
190 lines (157 loc) · 7.16 KB
/
services.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# /////////////////////////////////////////////////////////////////////////////////////////////
# --- Libraries ---
import pandas as pd
import os
from psycopg2 import extras
from db import conn, cursor, ensure_tables_exist
import isodate
# /////////////////////////////////////////////////////////////////////////////////////////////
# --- Services ---
class ChannelDataManager():
def get_channel_statistics(self, youtube, channel_id):
request = youtube.channels().list(
part="snippet,statistics",
id=channel_id
)
response = request.execute()
channel_stats = []
if 'items' in response and len(response['items']) > 0:
for item in response['items']:
snippet = item['snippet']
statistics = item['statistics']
channel_stats.append([
item['id'],
snippet['title'],
snippet['description'],
int(statistics['viewCount']),
int(statistics['subscriberCount']),
int(statistics['videoCount']),
snippet['publishedAt'],
])
df = pd.DataFrame(channel_stats, columns=['channel_id', 'title', 'description', 'view_count', 'subscriber_count', 'video_count', 'published_at'])
file_path = f'./data/channel_data/channel_stats_id_{channel_id}.csv'
os.makedirs(os.path.dirname(file_path), exist_ok=True)
df.to_csv(file_path, index=False)
print(df)
self.store_channel_data(df)
return df
def store_channel_data(self, df):
data = df.to_dict('records')
with conn:
with conn.cursor() as cur:
extras.execute_batch(cur, """
INSERT INTO channels_data (channel_id, title, description, view_count, subscriber_count, video_count, published_at)
VALUES (%(channel_id)s, %(title)s, %(description)s, %(view_count)s, %(subscriber_count)s, %(video_count)s, %(published_at)s)
ON CONFLICT (channel_id) DO UPDATE SET
title = EXCLUDED.title,
description = EXCLUDED.description,
view_count = EXCLUDED.view_count,
subscriber_count = EXCLUDED.subscriber_count,
video_count = EXCLUDED.video_count,
published_at = EXCLUDED.published_at
""", data)
class CommentsDataManager():
def select_all_videos(self, youtube, channel_id):
response = youtube.channels().list(
part='contentDetails',
id=channel_id
).execute()
uploads_playlist_id = response['items'][0]['contentDetails']['relatedPlaylists']['uploads']
videos = []
next_page_token = None
while True:
playlist_response = youtube.playlistItems().list(
part='snippet',
playlistId=uploads_playlist_id,
maxResults=50,
pageToken=next_page_token
).execute()
for item in playlist_response['items']:
videos.append(item['snippet']['resourceId']['videoId'])
next_page_token = playlist_response.get('nextPageToken')
if next_page_token is None:
break
return videos
def get_comments_data(self, youtube, video_id):
comments = []
next_page_token = None
while True:
try:
request = youtube.commentThreads().list(
part="snippet",
videoId=video_id,
maxResults=100,
pageToken=next_page_token
)
response = request.execute()
for item in response['items']:
comment = item['snippet']['topLevelComment']['snippet']
comments.append([
video_id,
comment['authorDisplayName'],
comment['publishedAt'],
comment['updatedAt'],
int(comment['likeCount']),
comment['textDisplay']
])
next_page_token = response.get('nextPageToken')
if next_page_token is None:
break
except Exception as e:
print(f"An error occurred while fetching comments for video {video_id}: {str(e)}")
break
df = pd.DataFrame(comments, columns=['video_id', 'author', 'published_at', 'updated_at', 'like_count', 'text'])
file_path = f'./data/comments_data/comments_videoid_{video_id}.csv'
os.makedirs(os.path.dirname(file_path), exist_ok=True)
df.to_csv(file_path, index=False)
print(f"Saved comments for video {video_id}")
self.store_comments_data(df)
return df
def store_comments_data(self, df):
data = df.to_dict('records')
with conn:
with conn.cursor() as cur:
extras.execute_batch(cur, """
INSERT INTO comments_data (video_id, author, published_at, updated_at, like_count, text)
VALUES (%(video_id)s, %(author)s, %(published_at)s, %(updated_at)s, %(like_count)s, %(text)s)
ON CONFLICT (video_id, author, published_at) DO UPDATE SET
updated_at = EXCLUDED.updated_at,
like_count = EXCLUDED.like_count,
text = EXCLUDED.text
""", data)
class VideosManager():
def get_videos_average_duration(self, youtube, channel_id):
request = youtube.videos().list(
part="contentDetails",
chart="mostPopular",
regionCode="US",
maxResults=50,
)
response = request.execute()
videos = []
for item in response['items']:
duration = isodate.parse_duration(item['contentDetails']['duration'])
formatted_duration = str(duration)
videos.append([
item['id'],
formatted_duration
])
df = pd.DataFrame(videos, columns=['video_id', 'duration'])
file_path = f'./data/videos_data/videos_duration_data/videos_duration_id_{channel_id}.csv'
os.makedirs(os.path.dirname(file_path), exist_ok=True)
df.to_csv(file_path, index=False)
print(df)
self.store_videos_data(df)
return df
def store_videos_data(self, df):
data = df.to_dict('records')
with conn:
with conn.cursor() as cur:
extras.execute_batch(cur, """
INSERT INTO video_duration_data (video_id, duration)
VALUES (%(video_id)s, %(duration)s)
ON CONFLICT (video_id) DO UPDATE SET
duration = EXCLUDED.duration
""", data)
# Implement user location data service
# /////////////////////////////////////////////////////////////////////////////////////////////