-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
38 lines (29 loc) · 1.04 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch.nn as nn
import torch.nn.functional as F
__all__ = [
"DiceLoss",
"DiceBCELoss",
]
class DiceLoss(nn.Module):
def __init__(self):
super(DiceLoss, self).__init__()
@staticmethod
def forward(output, target, smooth=1e-5):
output = F.sigmoid(output)
batch = target.size(0)
input_flat = output.view(batch, -1)
target_flat = target.view(batch, -1)
intersection = input_flat * target_flat
loss = 2 * (intersection.sum(1) + smooth) / (input_flat.sum(1) + target_flat.sum(1) + smooth)
loss = 1 - loss.sum() / batch
return loss
class DiceBCELoss(nn.Module):
def __init__(self, weight_ce=0.6):
super(DiceBCELoss, self).__init__()
self.weight_ce = weight_ce
self.dc = DiceLoss()
def forward(self, net_output, target):
dc_loss = self.dc(net_output, target)
ce_loss = F.binary_cross_entropy_with_logits(net_output, target)
result = self.weight_ce * ce_loss + (1 - self.weight_ce) * dc_loss
return result