-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathR-basics.Rmd
222 lines (171 loc) · 4.65 KB
/
R-basics.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
title: "R Basics"
output: html_document
---
# R Studio Interface
Posit (Formerly R Studio Public Benefit Corporation) publishes helpful and extremely detailed cheatsheets: <https://posit.co/resources/cheatsheets/>
1. **Notice:** Working Directory at top of Console
2. **Demo:** Start a new R notebook
3. **Demo:** Use Packages tab to install a package (tidyverse, titanic, gmodels)
```{r message=FALSE, warning=FALSE}
#install.packages("tidyverse") #uncomment (remove leading #) to run
require(tidyverse)
```
## Data import
- **Demo:** Import Dataset Wizard in Upper Tab Pane: Environment
- nutrient.txt (fixed width format) - use base
- registration_times.csv (can set some datatypes on import)
### Output generated by Base wizard for Nutrient.txt
```{r paged.print=FALSE}
n_df <- read.table("nutrient.txt", quote="\"", comment.char="")
head(n_df)
names(n_df) # Column names are not great
```
```{r paged.print=FALSE}
# replace the names with a vector of new names
names(n_df) = c("caseID", "calcium", "iron", "protein", "vitA", "vitC")
head(n_df)
str(n_df)
```
### Output from readr import wizard:
```{r}
# This help file explains the tokens available for parsing time
?parse_date_time
```
```{r}
# code from import wizard
require(readr)
registration_times <- read_csv(
"registration_times.csv",
col_types = cols(`Registration Time` = col_datetime(format = "%Y-%m-%d %H:%M:%S")
))
```
```{r paged.print=FALSE}
summary(registration_times)
head(registration_times)
```
```{r}
# "org" variable might be better represented as a factor
# check the unique values:
unique(registration_times$org)
```
```{r}
registration_times$org = factor(registration_times$org, levels=c('wcm', 'cu', 'other'))
# While we are at it, lets rename the first column from `registration time` to just `time`:
names(registration_times)[1] = "time"
head(registration_times)
```
## Describing Data
### Numeric data
```{r paged.print=FALSE}
# Basic summary of dataframe
summary(n_df)
```
```{r}
# Base R approach using apply functions (see also sapply, lapply)
apply(n_df, 2, mean) # "2" applies function "by column"
apply(n_df, 2, sd)
```
```{r}
gg = (
ggplot(n_df, aes(x=calcium))
+ geom_histogram(bins=50)
+ ggtitle("Distribution of Calcium Intake")
)
gg
```
```{r}
# Visual Description
require(ggplot2)
gg = (
ggplot(n_df, aes(x=calcium, y=iron))
+ geom_point()
+ ggtitle("Scatterplot of Iron and Calcium Intake")
)
gg
```
### Categorical Data
```{r}
require(titanic)
df = titanic_train
str(df)
head(df)
```
Again, data types are not as precise as they could be.
Types are Character, int, int but they are really all factors
```{r}
# use dplyr functions and the "pipe" operator `%>%`
# alternative: head(select(df, Sex, Survided, Pclass))
df %>% select( Sex, Survived, Pclass) %>% head
df %>% select( Sex, Survived, Pclass) %>% summary
```
```{r}
# less than idead data types lead to less ideal summaries
table(df$Survived)
```
```{r}
# Create factors from the columns
df$Sex = factor(df$Sex, levels=c("male", "female"))
df$Survived = factor(df$Survived, levels=c(0, 1), labels=c("No", "Yes"))
df$Pclass = factor(df$Pclass, levels=c(1,2,3), ordered=TRUE)
#Check the summary now:
df %>% select( Sex, Survived, Pclass) %>% summary
```
Check for missing data:
```{r}
nrow(df)
colSums(is.na(df))
```
```{r}
#Single variable count tables
table(df$Sex)
table(df$Survived)
```
#### Table and Prop.table
```{r}
sex_surv = table(df$Sex, df$Survived, dnn=c("Sex", "Survived"))
sex_surv
addmargins(sex_surv)
writeLines("")
prop.table(sex_surv, 1 ) # The "1" means row proportions
prop.table(sex_surv, 2) # The "2" means column proportions
prop.table(sex_surv) # skip the argument to get proportion of table total
round(prop.table(sex_surv, 1), 2)
```
#### CrossTable (gmodels package)
```{r}
# gmodels package gives output more like SPSS/SAS/STATA
require(gmodels) #show install
CrossTable(df$Sex, df$Survived, digits=2, expected=TRUE, chisq=TRUE)
```
#### Xtabs
```{r}
# We need to know the variable names:
names(df)
```
```{r}
surv_class_sex = xtabs(~Survived+Pclass+Sex, data=df)
surv_class_sex
ftable(surv_class_sex)
```
#### Dplyr
```{r paged.print=FALSE}
(
df
%>% group_by(Pclass, Sex, Survived)
%>% summarize(n = n())
%>% group_by(Pclass, Sex)
%>% mutate( Rate = n/sum(n))
#%>% filter(Survived=='Yes'). #only keep survival rate
)
```
```{r paged.print=FALSE}
df %>% group_by(Sex) %>% summarize(age = mean(Age))
df %>% group_by(Sex) %>% summarize(age = mean(Age, na.rm=TRUE))
```
#### Regression model
(Note: proper model fitting and interpretation is beyond the scope of this tutorial)
```{r}
m1 = glm(Survived ~ Sex + Pclass + Age, family = 'binomial', data=df)
summary(m1)
```