-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRNNCE.py
255 lines (217 loc) · 11.3 KB
/
RNNCE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import time
import datetime
from tensorflow import flags
import argparse
import tensorflow as tf
import numpy as np
import embed_char as tool
class TextRNN(object):
"""
<Parameters>
- sequence_length: 최대 문장 길이
- num_classes: 클래스 개수
- vocab_size: 등장 단어 수
- embedding_size: 각 단어에 해당되는 임베디드 벡터의 차원
- filter_sizes: convolutional filter들의 사이즈
- num_filters: 각 filter size 별 filter 수
- l2_reg_lambda: 각 weights, biases에 대한 l2 regularization 정도
"""
def __init__(
self, sequence_length, num_classes, vocab_size,
embedding_size, filter_sizes, num_filters, batch_size=1, l2_reg_lambda=0.0):
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.batch_size = tf.placeholder(tf.constant(None, dtype=tf.int32))
# self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
# l2_loss = tf.constant(0.0)
# Embedding layer
"""
<Variable>
- W: 각 단어의 임베디드 벡터의 성분을 랜덤하게 할당
"""
with tf.name_scope("embedding"):
#with tf.device('/cpu:0'), tf.name_scope("embedding"):
W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0, dtype=tf.float32),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
# self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
with tf.name_scope("lstm"):
cell = tf.nn.rnn_cell.BasicLSTMCell(embedding_size)
self.cell = cell
self.initial_state = cell.zero_state(batch_size, tf.float32)
with tf.name_scope("FullyConnected"):
self.fc_W = tf.Variable(tf.random_uniform([embedding_size, num_classes], -1.0, 1.0))
self.fc_b = tf.Variable(tf.constant(0.1, shape=[num_classes]))
# 출력값
with tf.name_scope("output"):
outputs, self.last_state = tf.nn.dynamic_rnn(self.cell, self.embedded_chars,
initial_state=self.initial_state, dtype=tf.float32)
# output = outputs[:, -1, :]
output = tf.reshape(outputs, [-1, embedding_size])
self.logits = tf.matmul(output, self.fc_W) + self.fc_b
self.predictions = tf.argmax(self.logits, axis = 1, name="predictions")
# Loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logits, labels=self.input_y)
self.loss = tf.reduce_mean(losses)
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
# data loading
data_path = 'data/using/rt-polarity.all'
contents, points = tool.loading_rdata(data_path, eng=True, num=True, punc=False)
contents = tool.cut(contents,cut=4)
# tranform document to vector
max_document_length = 200
x, vocabulary, vocab_size = tool.make_input(contents,max_document_length)
print('사전단어수 : %s' % (vocab_size))
print('사전단어수 : %d' % len(vocabulary))
y = tool.make_output(points, threshold=0.5)
# divide dataset into train/test set
x_train, x_test, y_train, y_test = tool.divide(x,y,train_prop=0.8)
parser = argparse.ArgumentParser()
# Model Hyperparameters
parser.add_argument("--embedding_dim", type=int, default=128, help="Dimensionality of embedded vector (default: 128)")
parser.add_argument("--filter_sizes", type=str, default="3,4,5", help="Comma-separated filter sizes (default: '3,4,5')")
parser.add_argument("--num_filters", type=int, default=128, help="Number of filters per filter size (default: 128)")
parser.add_argument("--dropout_keep_prob", type=float, default=0.5, help="Dropout keep probability (default: 0.5)")
parser.add_argument("--l2_reg_lambda", type=float, default=0.1, help="L2 regularization lambda (default: 0.0)")
# Training parameters
parser.add_argument("--batch_size", type=int, default=64, help="Batch Size (default: 64)")
parser.add_argument("--num_epochs", type=int, default=200, help="Number of training epochs (default: 200)")
parser.add_argument("--evaluate_every", type=int, default=100, help="Evaluate model on dev set after this many steps (default: 100)")
parser.add_argument("--checkpoint_every", type=int, default=100, help="Save model after this many steps (default: 100)")
parser.add_argument("--num_checkpoints", type=int, default=5, help="Number of checkpoints to store (default: 5)")
# Misc Parameters
parser.add_argument("--allow_soft_placement", type=bool, default=True, help="Allow device soft device placement")
parser.add_argument("--log_device_placement", type=bool, default=False, help="Log placement of ops on devices")
FLAGS = parser.parse_args()
#FLAGS._parse_flags()
print("\nParameters:")
#for attr, value in sorted(list(FLAGS)):
# print("{}={}".format(attr.upper(), value))
print("")
# 3. train the model and test
with tf.Graph().as_default():
sess = tf.Session()
with sess.as_default():
cnn = TextRNN(sequence_length=x_train.shape[1],
num_classes=y_train.shape[1],
vocab_size=vocab_size,
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
batch_size=FLAGS.batch_size,
l2_reg_lambda=FLAGS.l2_reg_lambda)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(1e-3)
# optimizer.minimize(cnn.loss, global_step=global_step)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", cnn.loss)
acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
# Initialize all variables
sess.run(tf.global_variables_initializer())
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
# cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
}
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
# cnn.dropout_keep_prob: 1.0
}
step, summaries, loss, accuracy = sess.run(
[global_step, dev_summary_op, cnn.loss, cnn.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
if writer:
writer.add_summary(summaries, step)
def batch_iter(data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
num_batches_per_epoch = int((len(data) - 1) / batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]
# Generate batches
batches = batch_iter(
list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
testpoint = 0
# Training loop. For each batch...
for batch in batches:
x_batch, y_batch = zip(*batch)
train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
if testpoint + 100 < len(x_test):
testpoint += 100
else:
testpoint = 0
print("\nEvaluation:")
dev_step(x_test[testpoint:testpoint+100], y_test[testpoint:testpoint+100], writer=dev_summary_writer)
print("")
if current_step % FLAGS.checkpoint_every == 0:
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print("Saved model checkpoint to {}\n".format(path))