-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnlm_image_repo.py
147 lines (128 loc) · 5.1 KB
/
nlm_image_repo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import requests
from bs4 import BeautifulSoup
from selenium import webdriver
import time
import csv
API_URL = 'https://openi.nlm.nih.gov/api'
IMAGE_URL = 'https://openi.wip.nlm.nih.gov/{}'
RESULT_URL = 'https://openi.wip.nlm.nih.gov/detailedresult?img={}'
# imgs/512/1/1/CXR1_1_IM-0001-3001.png?keywords=normal
def search_images(curr_min, curr_max, collection='cxr'):
_image_json = requests.get('https://openi.nlm.nih.gov/api/search?coll={}&m={}&n={}'.format(collection, curr_min,
curr_max))
_list = _image_json.json().get('list', list())
return _list
def get_abstract_note(_driver, result_url, sleep=0.5):
_driver.get(result_url)
_driver.execute_script("window.scrollTo(0, 100)")
time.sleep(sleep)
note = ''
soup = BeautifulSoup(driver.page_source, 'html.parser')
text_divs = soup.findAll("div", {"class": "collapsible"})
for t in text_divs:
_text = t.text.strip()
if _text.startswith('Abstract'):
for ch in t.children:
if hasattr(ch, 'children'):
for ch_1 in ch.children:
if ch_1.name == 'p':
for ch_2 in ch_1.children:
if hasattr(ch_2, 'text'):
note += ch_2.text.strip() + ' '
else:
note += str(ch_2) + '\n'
note += '\n'
break
return note.replace('Abstract', '', 1).strip()
def parse_nlm(l, _driver, default_type='Chest X-ray'):
csv_row = dict()
image_url = IMAGE_URL.format(l.get('imgLarge'))
image_key = image_url.split('/')[-1].split('.')[0]
result_url = RESULT_URL.format(image_key)
print(result_url)
note = get_abstract_note(_driver, result_url)
if note == '':
note = get_abstract_note(_driver, result_url, sleep=10)
if note == '':
print('no text found')
image_info = l.get('image', {
'caption': 'CXR'
})
caption = image_info.get('caption', default_type)
if caption.lower().startswith('not available'):
caption = ''
csv_row['subject'] = 'cxr_subject_{}'.format(l.get('pmcid'), str(n))
csv_row['report_id'] = image_key
csv_row['id'] = image_key
csv_row['source'] = 'NLM_image_collection'
csv_row['title_attr'] = l.get('title', '')
doc_source = l.get('docSource', default_type)
report_text = (note + '\n\n' + caption).strip()
report_text = ''.join([i if ord(i) < 128 else ' ' for i in report_text])
csv_row['report_text'] = report_text
csv_row['report_type'] = doc_source
csv_row['description_attr'] = caption
csv_row['image_url_attr'] = image_url
csv_row['author_attr'] = l.get('authors', '')
csv_row['resource_url_attr'] = result_url
csv_row['problems_attr'] = l.get('Problems', '')
dt = l.get('journal_date', {
'day': '01',
'month': '01',
'year': '2019'
})
yr = dt.get('year', '2019')
mo = dt.get('month', '01')
da = dt.get('day', '01')
if yr.strip() == '':
yr = '2019'
if mo.strip() == '':
mo = '01'
if len(mo) == 1:
mo = "0{}".format(mo)
if da.strip() == '':
da = '01'
if len(da) == 1:
da = "0{}".format(da)
csv_row['report_date'] = "{}-{}-{}T00:00:00Z".format(yr, mo, da)
print(csv_row['report_date'])
return csv_row
def get_total(collection='cxr'):
url = 'https://openi.nlm.nih.gov/api/search?coll={}&m=1'.format(collection)
res = requests.get(url)
_json = res.json()
_total = _json.get('total', 0)
return _total
if __name__ == "__main__":
driver = webdriver.Chrome()
driver.set_page_load_timeout(30)
colls = ['mpx', 'cxr']
for c in colls:
total = get_total(collection=c)
n = 0
rows_added = 0
print(total)
f_name = '/Users/charityhilton/Downloads/nlm_{}_images.csv'.format(c)
print(f_name)
with open(f_name, 'w') as csvfile:
fieldnames = ['report_id', 'id', 'subject', 'report_type', 'report_date', 'source', 'author_attr',
'resource_url_attr', 'description_attr', 'problems_attr', 'image_url_attr', 'title_attr',
'report_text']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
start = 0
for i in range(start, total, 10):
images = search_images(i+1, i+9, collection=c)
for l in images:
csv_row = parse_nlm(l, driver)
if csv_row:
txt = csv_row.get('report_text', '')
if len(txt) > 0:
writer.writerow(csv_row)
rows_added += 1
else:
print('row not written')
if n % 5 == 0:
print('rows added {}'.format(rows_added))
csvfile.flush()
n += 1