-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPollardRho.py
146 lines (125 loc) · 4.22 KB
/
PollardRho.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import random
class PollardRho():
def __init__(self, a, b, n, phi_n=None):
if not phi_n:
self.phi_n = self.phi(n)
self.alpha = a
self.beta = b
self.n = n
# terrible way to do this
def phi(self, n):
amount = 0
for k in range(1, n + 1):
if self.ExtendedEuclidianAlgorithm(n,k)[0] == 1:
amount += 1
return amount
def multiply(self, e_0, e_1):
return (e_0 * e_1) % self.n
def f(self, x):
S_val = x % 3
if S_val is 0:
return self.multiply(x, x)
if S_val is 1:
return self.multiply(self.alpha, x)
return self.multiply(self.beta, x)
def g(self, x, a):
S_val = x % 3
if S_val is 0:
return (2*a) % (self.phi_n)
if S_val is 1:
return (a+1) % (self.phi_n)
return a
def h(self, x, b):
S_val = x % 3
if S_val is 0:
return (2*b) % (self.phi_n)
if S_val is 1:
return b
return (b+1) % (self.phi_n)
def raiseByExponent(self, element, exp):
if exp is 1:
return element
gArray = []
gArray.append(element)
r = self.multiply(element, element)
gArray.append(r)
for i in range(2, exp.bit_length()):
r = self.multiply(r, r)
gArray.append(r)
lowestBit = 0
for i in range(exp.bit_length()):
if ((exp & (1 << i)) != 0):
lowestBit = i
break
r = gArray[lowestBit]
lowestBit += 1
for i in range(lowestBit, exp.bit_length()):
if ((exp & (1 << i)) != 0):
r = self.multiply(r, gArray[i])
return r
def ExtendedEuclidianAlgorithm(self, a,b):
prevx, x = 1, 0; prevy, y = 0, 1
while b:
q, r = divmod(a,b)
x, prevx = prevx - q*x, x
y, prevy = prevy - q*y, y
a, b = b, r
return a, prevx, prevy
def modInverse(self, element, mod=None):
if not mod:
mod = self.n
return self.ExtendedEuclidianAlgorithm(element, mod)[1]
def solve(self, a_i, b_i, a_2i, b_2i, n):
x = (b_2i-b_i) % n
if x == 0:
return None
y = (a_i-a_2i) % n
gcd, x_inv, t = self.ExtendedEuclidianAlgorithm(x, n)
if(gcd != 1):
if(y % gcd == 0):
x_inv = self.modInverse(x//gcd, n//gcd)
return ((y//gcd)*x_inv) % (n//gcd)
return None
return (y*x_inv) % n
# returns the exponent for logarithm or None if failure.
def run(self):
if self.beta == 1:
return 0
if self.alpha == self.beta:
return 1
a_i, b_i, x_i = 0, 0, 1
a_2i, b_2i, x_2i = 0, 0, 1
for _ in range(1, self.n):
x_t = x_i
x_i = self.f(x_t)
a_i = self.g(x_t, a_i)
b_i = self.h(x_t, b_i)
x_2t = x_2i
f_2t = self.f(x_2t)
x_2i = self.f(f_2t)
a_2i = self.g(f_2t, self.g(x_2t, a_2i))
b_2i = self.h(f_2t, self.h(x_2t, b_2i))
if x_i == x_2i:
return self.solve(a_i, b_i, a_2i, b_2i, self.n-1)
return None
if __name__ == '__main__':
# In multiplicative group Z_{131} the smallest primitive elements are 2 and 6.
print(PollardRho(2, 8 ,17161).run())
# NUM_TESTS = 1000
# generators = [2,6]
# G = 131
# for g in generators:
# print("=================("+str(g)+")=================")
# fails = 0
# for i in range(2, G):
# rand_num = random.randint(2, G-1)
# p = PollardRho(g, i, G)
# res = p.run()
# if res is None:
# res = "Failure"
# fails +=1
# else:
# res = str(res)
# if res != "Failure":
# print("Solving log_"+str(g)+"("+str(i)+")... Result: "+res)
# print("==============("+str(g)+"-"+str(round(fails*100/(G-2), 2))+"%)==============\n")